Laser Heat-Mode Lithography pp 1-26 | Cite as
Current Status of Lithography
Chapter
First Online:
Abstract
Lithography is one of the critical processes used for the fabrication of microelectronic chips and micro/nanostructure-based electro-optical devices. The pattern structures are usually fabricated on the resist thin films and then transferred to the silicon or fused quartz substrates through the exposure and etching techniques.
References
- 1.A. Erdmann, T. Fühner, P. Evanschitzky, V. Agudelo, C. Freund, P. Michalak, D. Xu, Optical and EUV projection lithography: a computational view. Microelectron. Eng. 132, 21–34 (2015)CrossRefGoogle Scholar
- 2.L. J. Guo, Recent progress in nanoimprint technology and its applications. J. Phys. D 37(11), R123 (2004)ADSCrossRefGoogle Scholar
- 3.Z. Cui, Nanofabrication, Principles, Capabilities and Limits, (Springer 2008)Google Scholar
- 4.M. Rothschild, Projection optical lithography. Mater. Today 8(2), 18–24 (2005)CrossRefGoogle Scholar
- 5.L. Li, X. Liu, S. Pal, S. Wang, C. K. Ober, E. P. Giannelis, Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 46(16), 4855–4866 (2017)CrossRefGoogle Scholar
- 6.E. M. Panning, K. A. Goldberg, A. Pirati, J. van Schoot, K. Troost, R. van Ballegoij, P. Krabbendam, J. Stoeldraijer, E. Loopstra, J. Benschop, J. Finders, H. Meiling, E. van Setten, N. Mika, J. Dredonx, U. Stamm, B. Kneer, B. Thuering, W. Kaiser, T. Heil, S. Migura, The future of EUV lithography: enabling Moore’s Law in the next decade. Proc. SPIE 10143, 101430G (2017)CrossRefGoogle Scholar
- 7.C. Wagner, N. Harned, EUV lithography: lithography gets extreme. Nat. Photonics 4(1), 24–26 (2010)ADSCrossRefGoogle Scholar
- 8.R. Obert, I. I. Wood, EUVL-Challenges to manufacturing insertion. J. Photopolymer Sci. Technol. 30(5), 599–604 (2017)CrossRefGoogle Scholar
- 9.E. M. Panning, K. A. Goldberg, M. van de Kerkhof, H. Jasper, L. Levasier, R. Peeters, R. van Es, J. W. Bosker, A. Zdravkov, E. Lenderink, F. Evangelista, P. Broman, B. Bilski, T. Last, Enabling sub-10 nm node lithography: presenting the NXE: 3400B EUV scanner with improved overlay, imaging, and throughput. Proc. SPIE 10143, 101430D (2017)Google Scholar
- 10.J. Yunbum, C. Xing, Dual-layer thermal nanoimprint lithography without dry etching. J. Micromech. Microeng. 22(8), 085011 (2012)CrossRefGoogle Scholar
- 11.G. A. Ozin, K. Hou, B. V. Lotsch, L. Cademartiri, D. P. Puzzo, F. Scotognella, A. Ghadimi, J. Thomson, Nanofabrication by self-assembly. Mater. Today 12(5), 12–23 (2009)CrossRefGoogle Scholar
- 12.G. Zhang, C. Lan, H. Bian, R. Gao, J. Zhou, Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing. Opt. Express 25(18), 22038 (2017)ADSCrossRefGoogle Scholar
- 13.R. Menon, A. Patel, D. Gil, H. I. Smith, Maskless lithography. Mater. Today 8(2), 26–33 (2005)CrossRefGoogle Scholar
- 14.Y. Chen, Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015)CrossRefGoogle Scholar
- 15.I. Haller, M. Hatzakis, R. Srinivasan, High-resolution positive resists for electron-beam exposure. IBM J. Res. Dev. 12(3), 251–256 (1968)CrossRefGoogle Scholar
- 16.Y. Kenji, N. Hideo, 5-nm-order electron-beam lithography for nanodevice fabrication. Jap. J. Appl. Phys. 43(6S), 3767 (2004)Google Scholar
- 17.L.W. Swanson, Liquid metal ion sources: mechanism and applications. Nucl. Instrum. Methods Phys. Res. 218(1), 347–353 (1983)ADSCrossRefGoogle Scholar
- 18.A. Nadzeyka, L. Peto, S. Bauerdick, M. Mayer, K. Keskinbora, C. Grévent, M. Weigand, M. Hirscher, G. Schütz, Ion beam lithography for direct patterning of high accuracy large area X-ray elements in gold on membranes. Microelectron. Eng. 98, 198–201 (2012)CrossRefGoogle Scholar
- 19.R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nature Nanotechnol. 9(8), 577–587 (2014)ADSCrossRefGoogle Scholar
- 20.N. Mojarad, J. Gobrecht, Y. Ekinci, Interference lithography at EUV and soft X-ray wavelengths: principles, methods, and applications. Microelectron. Eng. 143, 55–63 (2015)CrossRefGoogle Scholar
- 21.T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, H. I. Smith, Large-area achromatic interferometric lithography for 100 nm period gratings and grids. J. Vacuum Sci. Technol. B 13(6), 2732–2735 (1995)Google Scholar
- 22.D. Dudley, W. M. Duncan, J. Slaughter, Emerging digital micromirror device (DMD) applications. Proc. SPIE 4985, 14–25 (2003)ADSCrossRefGoogle Scholar
- 23.E. J. Hansotte, E. C. Carignan, W. D. Meisburger, High speed maskless lithography of printed circuit boards using digital micromirrors. Proc. SPIE. 7932, 793207 (2011)CrossRefGoogle Scholar
- 24.R. Menon, D. Gil, D. J. D. Carter, A. Patel, H. I. Smith, Zone-plate array lithography (ZPAL): a maskless fast-turnaround system for micro-optic device fabrication. Proc. SPIE 4984, 10–17 (2003)ADSCrossRefGoogle Scholar
- 25.R. Wang, J. Wei, Y. Fan, Chalcogenide phase-change thin films used as grayscale photolithography materials. Opt. Express 22(5), 4973–4984 (2014)ADSCrossRefGoogle Scholar
- 26.Z. Bai, J. Wei, X. Liang, K. Zhang, T. Wei, R. Wang, High-speed laser writing of arbitrary patterns in polar coordinate system. Rev. Sci. Instruments 87(12), 125118 (2016)ADSCrossRefGoogle Scholar
- 27.N. Mojarad, J. Gobrecht, Y. Ekinci, Beyond EUV lithography: a comparative study of efficient photoresists’ performance. Sci. Rep. 5, 9235 (2015)ADSCrossRefGoogle Scholar
- 28.J. K. Tyminski, J. A. Sakamoto, S. R. Palmer, S. P. Renwicka, Lithographic imaging-driven pattern edge placement errors at the 10-nm node. J. Micro/Nanolithaphy MEMS MOEMS 15(2), 021402 (2016)ADSCrossRefGoogle Scholar
- 29.B. Mortini, Photosensitive resists for optical lithography. C R Phys. 7(8), 924–930 (2006)ADSCrossRefGoogle Scholar
- 30.K. Takahiro, T. Seiichi, Radiation chemistry in chemically amplified resists. Jpn. J. Appl. Phys. 49(3R), 030001 (2010)Google Scholar
- 31.J. L. Dektar, N. P. Hacker, Photochemistry of triarylsulfonium salts. J. Am. Chem. Soc. 112(16), 6004–6015 (1990)CrossRefGoogle Scholar
- 32.T. Itani, T. Kozawa, Resist materials and processes for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 52(1R), 010002 (2013)ADSCrossRefGoogle Scholar
- 33.B. L. Henke, E. M. Gullikson, J. C. Davis, X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom. Data Nucl. Data Tables 54(2), 181–342 (1993)ADSCrossRefGoogle Scholar
- 34.K. Takahiro, T. Seiichi, S. Melissa, Theoretical study on relationship between acid generation efficiency and acid generator concentration in chemically amplified extreme ultraviolet resists. Jpn. J. Appl. Phys. 46(12L), L1143 (2007)Google Scholar
- 35.O. Hiroaki, T. Katsutomo, K. Kiminori, I. Toshiro, Development of new positive-tone molecular resists based on fullerene derivatives for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 49(6S), 06GF04 (2010)CrossRefGoogle Scholar
- 36.R. D. Allen, P. J. Brock, Y. H. Na, M. H. Sherwood, H. D. Truong, G. M. Wallraff, M. Fujiwara, K. Maeda, Investigation of polymer-bound PAGs: synthesis, characterization and initial structure/property relationships of anion-bound resists. J. Photopolym. Sci. Technol. 22(1), 25–29 (2009)CrossRefGoogle Scholar
- 37.V. Lyubin, Chalcogenide glassy photoresists: history of development, properties, and applications. Phys. Status Solidi B 246(8), 1758–1767 (2009)ADSCrossRefGoogle Scholar
- 38.A. Kovalskiy, Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. J. Micro/Nanolithography MEMS MOEMS 8(4), 043012 (2009)CrossRefGoogle Scholar
- 39.A. Kovalskiy, M. Vlcek, H. Jain, A. Fiserova, C. M. Waits, M. Dubey, Development of chalcogenide glass photoresists for grayscale lithography. J. Non-Crystalline Solids 352, 589–594 (2006)ADSCrossRefGoogle Scholar
- 40.V. A. Dan’ko, I. Z. Indutnyi, V. I. Min’ko, P. E. Shepelyavyi, Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectron. Instrum. Data Process. 46(5), 483–490 (2010)CrossRefGoogle Scholar
Copyright information
© Springer Nature Singapore Pte Ltd. 2019