Current Status of Lithography

  • Jingsong WeiEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 291)


Lithography is one of the critical processes used for the fabrication of microelectronic chips and micro/nanostructure-based electro-optical devices. The pattern structures are usually fabricated on the resist thin films and then transferred to the silicon or fused quartz substrates through the exposure and etching techniques.


  1. 1.
    A. Erdmann, T. Fühner, P. Evanschitzky, V. Agudelo, C. Freund, P. Michalak, D. Xu, Optical and EUV projection lithography: a computational view. Microelectron. Eng. 132, 21–34 (2015)CrossRefGoogle Scholar
  2. 2.
    L. J. Guo, Recent progress in nanoimprint technology and its applications. J. Phys. D 37(11), R123 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Cui, Nanofabrication, Principles, Capabilities and Limits, (Springer 2008)Google Scholar
  4. 4.
    M. Rothschild, Projection optical lithography. Mater. Today 8(2), 18–24 (2005)CrossRefGoogle Scholar
  5. 5.
    L. Li, X. Liu, S. Pal, S. Wang, C. K. Ober, E. P. Giannelis, Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 46(16), 4855–4866 (2017)CrossRefGoogle Scholar
  6. 6.
    E. M. Panning, K. A. Goldberg, A. Pirati, J. van Schoot, K. Troost, R. van Ballegoij, P. Krabbendam, J. Stoeldraijer, E. Loopstra, J. Benschop, J. Finders, H. Meiling, E. van Setten, N. Mika, J. Dredonx, U. Stamm, B. Kneer, B. Thuering, W. Kaiser, T. Heil, S. Migura, The future of EUV lithography: enabling Moore’s Law in the next decade. Proc. SPIE 10143, 101430G (2017)CrossRefGoogle Scholar
  7. 7.
    C. Wagner, N. Harned, EUV lithography: lithography gets extreme. Nat. Photonics 4(1), 24–26 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    R. Obert, I. I. Wood, EUVL-Challenges to manufacturing insertion. J. Photopolymer Sci. Technol. 30(5), 599–604 (2017)CrossRefGoogle Scholar
  9. 9.
    E. M. Panning, K. A. Goldberg, M. van de Kerkhof, H. Jasper, L. Levasier, R. Peeters, R. van Es, J. W. Bosker, A. Zdravkov, E. Lenderink, F. Evangelista, P. Broman, B. Bilski, T. Last, Enabling sub-10 nm node lithography: presenting the NXE: 3400B EUV scanner with improved overlay, imaging, and throughput. Proc. SPIE 10143, 101430D (2017)Google Scholar
  10. 10.
    J. Yunbum, C. Xing, Dual-layer thermal nanoimprint lithography without dry etching. J. Micromech. Microeng. 22(8), 085011 (2012)CrossRefGoogle Scholar
  11. 11.
    G. A. Ozin, K. Hou, B. V. Lotsch, L. Cademartiri, D. P. Puzzo, F. Scotognella, A. Ghadimi, J. Thomson, Nanofabrication by self-assembly. Mater. Today 12(5), 12–23 (2009)CrossRefGoogle Scholar
  12. 12.
    G. Zhang, C. Lan, H. Bian, R. Gao, J. Zhou, Flexible, all-dielectric metasurface fabricated via nanosphere lithography and its applications in sensing. Opt. Express 25(18), 22038 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    R. Menon, A. Patel, D. Gil, H. I. Smith, Maskless lithography. Mater. Today 8(2), 26–33 (2005)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, Nanofabrication by electron beam lithography and its applications: a review. Microelectron. Eng. 135, 57–72 (2015)CrossRefGoogle Scholar
  15. 15.
    I. Haller, M. Hatzakis, R. Srinivasan, High-resolution positive resists for electron-beam exposure. IBM J. Res. Dev. 12(3), 251–256 (1968)CrossRefGoogle Scholar
  16. 16.
    Y. Kenji, N. Hideo, 5-nm-order electron-beam lithography for nanodevice fabrication. Jap. J. Appl. Phys. 43(6S), 3767 (2004)Google Scholar
  17. 17.
    L.W. Swanson, Liquid metal ion sources: mechanism and applications. Nucl. Instrum. Methods Phys. Res. 218(1), 347–353 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    A. Nadzeyka, L. Peto, S. Bauerdick, M. Mayer, K. Keskinbora, C. Grévent, M. Weigand, M. Hirscher, G. Schütz, Ion beam lithography for direct patterning of high accuracy large area X-ray elements in gold on membranes. Microelectron. Eng. 98, 198–201 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Garcia, A.W. Knoll, E. Riedo, Advanced scanning probe lithography. Nature Nanotechnol. 9(8), 577–587 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    N. Mojarad, J. Gobrecht, Y. Ekinci, Interference lithography at EUV and soft X-ray wavelengths: principles, methods, and applications. Microelectron. Eng. 143, 55–63 (2015)CrossRefGoogle Scholar
  21. 21.
    T. A. Savas, S. N. Shah, M. L. Schattenburg, J. M. Carter, H. I. Smith, Large-area achromatic interferometric lithography for 100 nm period gratings and grids. J. Vacuum Sci. Technol. B 13(6), 2732–2735 (1995)Google Scholar
  22. 22.
    D. Dudley, W. M. Duncan, J. Slaughter, Emerging digital micromirror device (DMD) applications. Proc. SPIE 4985, 14–25 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    E. J. Hansotte, E. C. Carignan, W. D. Meisburger, High speed maskless lithography of printed circuit boards using digital micromirrors. Proc. SPIE. 7932, 793207 (2011)CrossRefGoogle Scholar
  24. 24.
    R. Menon, D. Gil, D. J. D. Carter, A. Patel, H. I. Smith, Zone-plate array lithography (ZPAL): a maskless fast-turnaround system for micro-optic device fabrication. Proc. SPIE 4984, 10–17 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    R. Wang, J. Wei, Y. Fan, Chalcogenide phase-change thin films used as grayscale photolithography materials. Opt. Express 22(5), 4973–4984 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Bai, J. Wei, X. Liang, K. Zhang, T. Wei, R. Wang, High-speed laser writing of arbitrary patterns in polar coordinate system. Rev. Sci. Instruments 87(12), 125118 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    N. Mojarad, J. Gobrecht, Y. Ekinci, Beyond EUV lithography: a comparative study of efficient photoresists’ performance. Sci. Rep. 5, 9235 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    J. K. Tyminski, J. A. Sakamoto, S. R. Palmer, S. P. Renwicka, Lithographic imaging-driven pattern edge placement errors at the 10-nm node. J. Micro/Nanolithaphy MEMS MOEMS 15(2), 021402 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    B. Mortini, Photosensitive resists for optical lithography. C R Phys. 7(8), 924–930 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    K. Takahiro, T. Seiichi, Radiation chemistry in chemically amplified resists. Jpn. J. Appl. Phys. 49(3R), 030001 (2010)Google Scholar
  31. 31.
    J. L. Dektar, N. P. Hacker, Photochemistry of triarylsulfonium salts. J. Am. Chem. Soc. 112(16), 6004–6015 (1990)CrossRefGoogle Scholar
  32. 32.
    T. Itani, T. Kozawa, Resist materials and processes for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 52(1R), 010002 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    B. L. Henke, E. M. Gullikson, J. C. Davis, X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. Atom. Data Nucl. Data Tables 54(2), 181–342 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    K. Takahiro, T. Seiichi, S. Melissa, Theoretical study on relationship between acid generation efficiency and acid generator concentration in chemically amplified extreme ultraviolet resists. Jpn. J. Appl. Phys. 46(12L), L1143 (2007)Google Scholar
  35. 35.
    O. Hiroaki, T. Katsutomo, K. Kiminori, I. Toshiro, Development of new positive-tone molecular resists based on fullerene derivatives for extreme ultraviolet lithography. Jpn. J. Appl. Phys. 49(6S), 06GF04 (2010)CrossRefGoogle Scholar
  36. 36.
    R. D. Allen, P. J. Brock, Y. H. Na, M. H. Sherwood, H. D. Truong, G. M. Wallraff, M. Fujiwara, K. Maeda, Investigation of polymer-bound PAGs: synthesis, characterization and initial structure/property relationships of anion-bound resists. J. Photopolym. Sci. Technol. 22(1), 25–29 (2009)CrossRefGoogle Scholar
  37. 37.
    V. Lyubin, Chalcogenide glassy photoresists: history of development, properties, and applications. Phys. Status Solidi B 246(8), 1758–1767 (2009)ADSCrossRefGoogle Scholar
  38. 38.
    A. Kovalskiy, Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. J. Micro/Nanolithography MEMS MOEMS 8(4), 043012 (2009)CrossRefGoogle Scholar
  39. 39.
    A. Kovalskiy, M. Vlcek, H. Jain, A. Fiserova, C. M. Waits, M. Dubey, Development of chalcogenide glass photoresists for grayscale lithography. J. Non-Crystalline Solids 352, 589–594 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    V. A. Dan’ko, I. Z. Indutnyi, V. I. Min’ko, P. E. Shepelyavyi, Interference photolithography with the use of resists on the basis of chalcogenide glassy semiconductors. Optoelectron. Instrum. Data Process. 46(5), 483–490 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina

Personalised recommendations