Nanopolysaccharides in Surface Coating

  • Hale Oguzlu
  • Feng JiangEmail author
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 15)


Surface coating represents a process that modifies the properties and functionalities of a bulk material by applying a thin layer of coating material. Depending on the coating material characteristics and targeted performance, the coating layer can range from a few nm to hundreds of μm or even mm thick. Nanopolysaccharides have been widely used as coating materials due to the interesting nanoscale dimension, abundant surface functional groups, low gas permeability, and excellent mechanical properties. This chapter summaries the most recent progress in coating techniques and applications of nanopolysaccharides as coating materials. The coating of nanopolysaccharides can be achieved either at the molecular/nanoscale level (Langmuir deposition, spin coating, and layer-by-layer deposition) or at large scale (dip coating and spray coating) and continuous production scale (roll-to-roll coating). In terms of coating applications, nanopolysaccharides can serve as rheology modifier for conventional coating materials, reinforcing filler in nanocomposites, or as standalone coating material for food packaging, photonic devices, biomedical devices, structural and building materials, as well as onto traditional substrates such as paper, plastic, and fabrics.


Nanopolysaccharides Coating techniques Applications Rheology modifiers 



This work was undertaken, in part, thanks to funding from the Canada Research Chair program. The authors also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2018-06818].


  1. 1.
    Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294CrossRefGoogle Scholar
  2. 2.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  3. 3.
    Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83:493–502CrossRefGoogle Scholar
  4. 4.
    Meyerhofer D (1978) Characteristics of resist films produced by spinning. J Appl Phys 49:3993–3997CrossRefGoogle Scholar
  5. 5.
    Bornside DE, Macosko CW, Scriven LE (1987) Modelling of spin coating. J Imaging Technol 13:122–130Google Scholar
  6. 6.
    Lawrence CJ, Zhou W (1991) Spin coating of non-Newtonian fluids. J Non-Newtonian Fluid Mech 39:137–187CrossRefGoogle Scholar
  7. 7.
    Rehg TJ, Higgins BG (1992) Spin coating of colloidal suspensions. AIChE J 38:489–501CrossRefGoogle Scholar
  8. 8.
    Wilson BP, Yliniemi K, Gestranius M et al (2018) Structural distinction due to deposition method in ultrathin films of cellulose nanofibres. Cellulose 25:1715–1724CrossRefGoogle Scholar
  9. 9.
    Villares A, Moreau C, Capron I et al (2014) Chitin nanocrystal-xyloglucan multilayer thin films. Biomacromol 15:188–194CrossRefGoogle Scholar
  10. 10.
    Villares A, Moreau C, Capron I et al (2014) Impact of ionic strength on chitin nanocrystal-xyloglucan multilayer film growth. Biopolymers 101:924–930CrossRefGoogle Scholar
  11. 11.
    Lefebvre J, Gray DG (2005) AFM of adsorbed polyelectrolytes on cellulose I surfaces spin-coated on silicon wafers. Cellulose 12:127–134CrossRefGoogle Scholar
  12. 12.
    Edgar CD, Gray DG (2003) Smooth model cellulose I surfaces from nanocrystal suspensions. Cellulose 10:299–306CrossRefGoogle Scholar
  13. 13.
    Jiang F, Kittle JD, Tan X et al (2013) Effects of sulfate groups on the adsorption and activity of cellulases on cellulose substrates. Langmuir 29:3280–3291CrossRefGoogle Scholar
  14. 14.
    Kontturi E, Johansson LS, Kontturi KS et al (2007) Cellulose nanocrystal submonolayers by spin coating. Langmuir 23:9674–9680CrossRefGoogle Scholar
  15. 15.
    Edgar CD, Gray DG (2002) Influence of dextran on the phase behavior of suspensions of cellulose nanocrystals. Macromolecules 35:7400–7406CrossRefGoogle Scholar
  16. 16.
    Ahola S, Turon X, Österberg M et al (2008) Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure. Langmuir 24:11592–11599CrossRefGoogle Scholar
  17. 17.
    Hann RA (1990) Molecular structure and monolayer properties. In: Roberts G (ed) Langmuir-blodgett films, 1st edn. Springer, New YorkCrossRefGoogle Scholar
  18. 18.
    Habibi Y, Foulon L, Aguie-Beghin V et al (2007) Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization. J Colloid Interface Sci 316:388–397CrossRefGoogle Scholar
  19. 19.
    Habibi Y, Hoeger I, Kelley SS et al (2010) Development of Langmuir-Schaeffer cellulose nanocrystal monolayers and their interfacial behaviors. Langmuir 26:990–1001CrossRefGoogle Scholar
  20. 20.
    Jiang F, Hsieh Y-L (2015) Holocellulose nanocrystals: Amphiphilicity, oil/water emulsion, and self-assembly. Biomacromol 16:1433–1441CrossRefGoogle Scholar
  21. 21.
    Bertsch P, Diener M, Adamcik J et al (2018) Adsorption and interfacial layer structure of unmodified nanocrystalline cellulose at air/water interfaces. Langmuir 34:15195–15202CrossRefGoogle Scholar
  22. 22.
    Capron I, Rojas OJ, Bordes R (2017) Behavior of nanocelluloses at interfaces. Curr Opin Colloid Interface Sci 29:83–95CrossRefGoogle Scholar
  23. 23.
    Landau L, Levich VG (1942) Dragging of a liquid by a moving plate. Acta Physicochim USSR 17:42–54Google Scholar
  24. 24.
    Derjaguin BV (1943) Thickness of liquid layer adhering to walls of vessels on their emptying and the theory of photo- and motion-picture film coating. C R Acad Sci URSS 39:13–16Google Scholar
  25. 25.
    Mendoza-Galvan A, Tejeda-Galan T, Dominguez-Gomez AB et al (2019) Linear birefringent films of cellulose nanocrystals produced by dip-coating. Nanomaterials 9:45CrossRefGoogle Scholar
  26. 26.
    Meulendijks N, Burghoorn M, van Ee R et al (2017) Electrically conductive coatings consisting of Ag-decorated cellulose nanocrystals. Cellulose 24:2191–2204CrossRefGoogle Scholar
  27. 27.
    Herrera MA, Sirvio JA, Mathew AP et al (2016) Environmental friendly and sustainable gas barrier on porous materials: nanocellulose coatings prepared using spin- and dip-coating. Mater Des 93:19–25CrossRefGoogle Scholar
  28. 28.
    Gans A, Dressaire E, Colnet B et al (2019) Dip-coating of suspensions. Soft Matter 15:252–261CrossRefGoogle Scholar
  29. 29.
    Pawlowski L (2009) Suspension and solution thermal spray coatings. Surf Coat Technol 203:2807–2829CrossRefGoogle Scholar
  30. 30.
    Ashgriz N (2011) Handbook of atomization and sprays theory and application Springer Science Business Media, LondonGoogle Scholar
  31. 31.
    Mirmehdi S, de Oliveira MLC, Hein PRG et al (2018) Spraying cellulose nanofibrils for improvement of tensile and barrier properties of writing & printing (W&P) paper. J Wood Chem Technol 38:233–245CrossRefGoogle Scholar
  32. 32.
    Mirmehdi S, Hein PRG, Sarantopoulos C et al (2018) Cellulose nanofibrils/nanoclay hybrid composite as a paper coating: effects of spray time, nanoclay content and corona discharge on barrier and mechanical properties of the coated papers. Food Packag Shelf 15:87–94CrossRefGoogle Scholar
  33. 33.
    Shanmugam K, Varanasi S, Garnier G et al (2017) Rapid preparation of smooth nanocellulose films using spray coating. Cellulose 24:2669–2676CrossRefGoogle Scholar
  34. 34.
    Shanmugam K, Doosthosseini H, Varanasi S et al (2018) Flexible spray coating process for smooth nanocellulose film production. Cellulose 25:1725–1741CrossRefGoogle Scholar
  35. 35.
    Richardson JJ, Björnmalm M, Caruso F (2015) Technology-driven layer-by-layer assembly of nanofilms. Science 348:aaa2491CrossRefGoogle Scholar
  36. 36.
    Bertrand P, Jonas A, Laschewsky A et al (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319–348CrossRefGoogle Scholar
  37. 37.
    Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromol 6:2914–2918CrossRefGoogle Scholar
  38. 38.
    Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromol 7:2522–2530CrossRefGoogle Scholar
  39. 39.
    Cranston ED, Gray DG (2008) Birefringence in spin-coated films containing cellulose nanocrystals. Colloids Surf A 325(1–2):44–51CrossRefGoogle Scholar
  40. 40.
    Jean B, Dubreuil F, Heux L et al (2008) Structural details of cellulose nanocrystals/polyelectrolytes multilayers probed by neutron reflectivity and AFM. Langmuir 24:3452–3458CrossRefGoogle Scholar
  41. 41.
    Herrera MA, Mathew AP, Oksman K (2014) Gas permeability and selectivity of cellulose nanocrystals films (layers) deposited by spin coating. Carbohydr Polym 112:494–501CrossRefGoogle Scholar
  42. 42.
    de Mesquita JP, Donnici CL, Pereira FV (2010) Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromol 11:473–480CrossRefGoogle Scholar
  43. 43.
    Li F, Biagioni P, Finazzi M et al (2013) Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydr Polym 92:2128–2134CrossRefGoogle Scholar
  44. 44.
    Wagberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefGoogle Scholar
  45. 45.
    Aulin C, Johansson E, Wågberg L et al (2010) Self-organized films from cellulose i nanofibrils using the layer-by-layer technique. Biomacromol 11:872–882CrossRefGoogle Scholar
  46. 46.
    Podsiadlo P, Sui L, Elkasabi Y et al (2007) Layer-by-layer assembled films of cellulose nanowires with antireflective properties. Langmuir 23:7901–7906CrossRefGoogle Scholar
  47. 47.
    Cranston ED, Gray DG (2006) Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 7:319–321CrossRefGoogle Scholar
  48. 48.
    Moreau C, Beury N, Delorme N et al (2012) Tuning the architecture of cellulose nanocrystal-poly(allylamine hydrochloride) multilayered thin films: influence of dipping parameters. Langmuir 28:10425–10436CrossRefGoogle Scholar
  49. 49.
    Cerclier CV, Guyomard-Lack A, Cousin F et al (2013) Xyloglucan-cellulose nanocrystal multilayered films: effect of film architecture on enzymatic hydrolysis. Biomacromol 14:3599–3609CrossRefGoogle Scholar
  50. 50.
    Jean B, Heux L, Dubreuil F et al (2009) Non-electrostatic building of biomimetic cellulose-xyloglucan multilayers. Langmuir 25:3920–3923CrossRefGoogle Scholar
  51. 51.
    Satam CC, Irvin CW, Lang AW et al (2018) Spray-coated multilayer cellulose nanocrystal—chitin nanofiber films for barrier applications. ACS Sustain Chem Eng 6:10637–10644CrossRefGoogle Scholar
  52. 52.
    Qi ZD, Saito T, Fan Y et al (2012) Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils. Biomacromol 13:553–558CrossRefGoogle Scholar
  53. 53.
    Pillai KV, Renneckar S (2016) Dynamic mechanical analysis of layer-by-layer cellulose nanocomposites. Ind Crops Prod 93:267–275CrossRefGoogle Scholar
  54. 54.
    Azzam F, Moreau C, Cousin F et al (2014) Cellulose nanofibril-based multilayered thin films: effect of ionic strength on porosity, swelling, and optical properties. Langmuir 30:8091–8100CrossRefGoogle Scholar
  55. 55.
    Karabulut E, Pettersson T, Ankerfors M et al (2012) Adhesive layer-by-layer films of carboxymethylated cellulose nanofibril dopamine covalent bioconjugates inspired by marine mussel threads. ACS Nano 6:4731–4739CrossRefGoogle Scholar
  56. 56.
    Lin ZY, Renneckar S, Hindman DP (2008) Nanocomposite-based lignocellulosic fibers 1. Thermal stability of modified fibers with clay-polyelectrolyte multilayers. Cellulose 15:333–346CrossRefGoogle Scholar
  57. 57.
    Eriksson M, Torgnysdotter A, Wagberg L (2006) Surface modification of wood fibers using the polyelectrolyte multilayer technique: effects on fiber joint and paper strength properties. Ind Eng Chem Res 45:5279–5286CrossRefGoogle Scholar
  58. 58.
    Renneckar S, Zhou Y (2009) Nanoscale coatings on wood: polyelectrolyte adsorption and layer-by-layer assembled film formation. ACS Appl Mater Interfaces 1:559–566CrossRefGoogle Scholar
  59. 59.
    Hamedi M, Karabulut E, Marais A et al (2013) Nanocellulose aerogels functionalized by rapid layer-by-layer assembly for high charge storage and beyond. Angew Chem Int Ed 52:12038–12042CrossRefGoogle Scholar
  60. 60.
    Tanaka C, Shiratori S (2013) Fabrication of the durable low refractive index thin film with chitin-nanofiber by LBL method. In: MATEC web of conferencesGoogle Scholar
  61. 61.
    Manabe K, Tanaka C, Moriyama Y et al (2016) Chitin nanofibers extracted from crab shells in broadband visible antireflection coatings with controlling layer-by-layer deposition and the application for durable antifog surfaces. ACS Appl Mater Interfaces 8:31951–31958CrossRefGoogle Scholar
  62. 62.
    Park J, Shin K, Lee C (2016) Roll-to-roll coating technology and its applications: a review. Int J Precis Eng Manuf 17:537–550CrossRefGoogle Scholar
  63. 63.
    Kumar V, Elfving A, Koivula H et al (2016) Roll-to-roll processed cellulose nanofiber coatings. Ind Eng Chem Res 55:3603–3613CrossRefGoogle Scholar
  64. 64.
    Ottesen V, Kumar V, Toivakka M et al (2017) Viability and properties of roll-to-roll coating of cellulose nanofibrils on recycled paperboard. Nord Pulp Pap Res J 32:179–188CrossRefGoogle Scholar
  65. 65.
    Koppolu R, Abitbol T, Kumar V et al (2018) Continuous roll-to-roll coating of cellulose nanocrystals onto paperboard. Cellulose 25:6055–6069CrossRefGoogle Scholar
  66. 66.
    Kinnunen-Raudaskoski K, Hjelt T, Kentta E et al (2014) Thin coatings for paper by foam coating. Tappi J 13:9–19CrossRefGoogle Scholar
  67. 67.
    Chowdhury RA, Clarkson C, Youngblood J (2018) Continuous roll-to-roll fabrication of transparent cellulose nanocrystal (CNC) coatings with controlled anisotropy. Cellulose 25:1769–1781CrossRefGoogle Scholar
  68. 68.
    Hoeng F, Denneulin A, Reverdy-Bruas N et al (2017) Rheology of cellulose nanofibrils/silver nanowires suspension for the production of transparent and conductive electrodes by screen printing. Appl Surf Sci 394:160–168CrossRefGoogle Scholar
  69. 69.
    Choi K-H, Yoo J, Lee CK et al (2016) All-inkjet-printed, solid-state flexible supercapacitors on paper. Energy Environ Sci 9:2812–2821CrossRefGoogle Scholar
  70. 70.
    Nechyporchuk O, Yu J, Nierstrasz VA et al (2017) Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in e-textile manufacturing. ACS Sustain Chem Eng 5:4793–4801CrossRefGoogle Scholar
  71. 71.
    Banks CE, Foster CW, Kadara RO (2016) Screen-printing electrochemical architectures. Springer Briefs in Applied Sciences and Technology, Springer, ChamCrossRefGoogle Scholar
  72. 72.
    Tang AM, Liu Y, Wang QW et al (2016) A new photoelectric ink based on nanocellulose/CdS quantum dots for screen-printing. Carbohydr Polym 148:29–35CrossRefGoogle Scholar
  73. 73.
    Latonen RM, Maattanen A, Ihalainen P et al (2017) Conducting ink based on cellulose nanocrystals and polyaniline for flexographical printing. J Mater Chem C 5:12172–12181CrossRefGoogle Scholar
  74. 74.
    Aulin C, Strom G (2013) Multilayered alkyd resin/nanocellulose coatings for use in renewable packaging solutions with a high level of moisture resistance. Ind Eng Chem Res 52:2582–2589CrossRefGoogle Scholar
  75. 75.
    Lavoine N, Desloges I, Khelifi B et al (2014) Impact of different coating processes of microfibrillated cellulose on the mechanical and barrier properties of paper. J Mater Sci 49:2879–2893CrossRefGoogle Scholar
  76. 76.
    Hult EL, Iotti M, Lenes M (2010) Efficient approach to high barrier packaging using microfibrillar cellulose and shellac. Cellulose 17:575–586CrossRefGoogle Scholar
  77. 77.
    Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRefGoogle Scholar
  78. 78.
    Saarikoski E, Saarinen T, Salmela J et al (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterisation of rheological behaviour. Cellulose 19:647CrossRefGoogle Scholar
  79. 79.
    Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 3:425CrossRefGoogle Scholar
  80. 80.
    Martoïa F, Perge C, Dumont PJJ et al (2015) Heterogeneous flow kinematics of cellulose nanofibril suspensions under shear. Soft Matter 11:4742CrossRefGoogle Scholar
  81. 81.
    Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28:17124–17133CrossRefGoogle Scholar
  82. 82.
    Iotti M, Gregersen ØW, Moe S et al (2011) Rheological studies of microfibrillar cellulose water dispersions. J Polym Environ 19:137–145CrossRefGoogle Scholar
  83. 83.
    Du L, Zhong T, Wolcott MP et al (2018) Dispersing and stabilizing cellulose nanoparticles in acrylic resin dispersions with unreduced transparency and changed rheological property. Cellulose 25:2435–2450CrossRefGoogle Scholar
  84. 84.
    Hamad WY, Hu TQ (2010) Structure-process-yield interrelation in nanocrystalline cellulose extraction. Can J Chem Eng 88:392Google Scholar
  85. 85.
    Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687CrossRefGoogle Scholar
  86. 86.
    Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305CrossRefGoogle Scholar
  87. 87.
    Lu A, Hemraz U, Khalili Z et al (2014) Unique viscoelastic behaviors of colloidal nanocrystalline cellulose aqueous suspensions. Cellulose 21:1239–1250CrossRefGoogle Scholar
  88. 88.
    Oguzlu H, Danumah C, Boluk Y (2017) Colloidal behavior of aqueous cellulose nanocrystal suspensions. Curr Opin Colloid Interface Sci 29:46–56CrossRefGoogle Scholar
  89. 89.
    Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21:3347–3359CrossRefGoogle Scholar
  90. 90.
    Lu A, Song Y, Boluk Y (2014) Electrolyte effect on gelation behavior of oppositely charged nanocrystalline cellulose and polyelectrolyte. Carbohydr Polym 114:57–64CrossRefGoogle Scholar
  91. 91.
    Boluk Y, Zhao L, Incani V (2012) Dispersions of nanocrystalline cellulose in aqueous polymer solutions: structure formation of colloidal rods. Langmuir 28:6114–6123CrossRefGoogle Scholar
  92. 92.
    Oguzlu H, Boluk Y (2017) Interactions between cellulose nanocrystals and anionic and neutral polymers in aqueous solutions. Cellulose 24:131–146CrossRefGoogle Scholar
  93. 93.
    Oguzlu H, Danumah C, Boluk Y (2016) The role of dilute and semi-dilute cellulose nanocrystal (CNC) suspensions on the rheology of carboxymethyl cellulose (CMC) solutions. Can J Chem Eng 94:1841–1847CrossRefGoogle Scholar
  94. 94.
    Fan Y, Fukuzumi H, Saito T et al (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50:69–76CrossRefGoogle Scholar
  95. 95.
    Bai L, Huan S, Xiang W et al (2019) Self-assembled networks of short and long chitin nanoparticles for oil/water interfacial superstabilization. ACS Sustain Chem Eng 7:6497–6511CrossRefGoogle Scholar
  96. 96.
    Perez Herrera M, Vasanthan T, Chen L (2017) Rheology of starch nanoparticles as influenced by particle size, concentration and temperature. Food Hydrocolloids 66:237–245CrossRefGoogle Scholar
  97. 97.
    Tuukkanen S, Lehtimäki S, Jahangir F et al (2014) Printable and disposable supercapacitor from nanocellulose and carbon nanotubes. In: 5th electronics system-integration technology conferenceGoogle Scholar
  98. 98.
    Torvinen K (2017) Flexible pigment-cellulose nanofibril composites for printed electronics applications. Åbo Akademi University, FinlandGoogle Scholar
  99. 99.
    Dimic-Misic K, Gane PAC, Paltakari J (2013) Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52:16066–16083CrossRefGoogle Scholar
  100. 100.
    Dimic-Misic K, Ridgway C, Maloney T et al (2014) Influence on pore structure of micro/nanofibrillar cellulose in pigmented coating formulations. Transp Porous Media 103:155–179CrossRefGoogle Scholar
  101. 101.
    Dimic-Misic K, Hummel M, Paltakari J et al (2015) From colloidal spheres to nanofibrils: extensional flow properties of mineral pigment and mixtures with micro and nanofibrils under progressive double layer suppression. J Colloid Interface Sci 446:31–43CrossRefGoogle Scholar
  102. 102.
    Xu Y, Kuang Y, Salminen P et al (2016) The influence of nano-fibrillated cellulose as a coating component in paper coating. BioResources 11:4342–4352Google Scholar
  103. 103.
    Oh K, Lee J-H, Im W et al (2017) Role of cellulose nanofibrils in structure formation of pigment coating layers. Ind Eng Chem Res 56:9569–9577CrossRefGoogle Scholar
  104. 104.
    Hoeng F, Denneulin A, Krosnicki G et al (2016) Positive impact of cellulose nanofibrils on silver nanowire coatings for transparent conductive films. J Mater Chem C 4:10945–10954CrossRefGoogle Scholar
  105. 105.
    Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72:R39–R55CrossRefGoogle Scholar
  106. 106.
    Fukuzumi H, Saito T, Wata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10:162–165CrossRefGoogle Scholar
  107. 107.
    Mascheroni E, Rampazzo R, Ortenzi MA et al (2016) Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate, to be used as coating on flexible food-packaging materials. Cellulose 23:779–793CrossRefGoogle Scholar
  108. 108.
    Gicquel E, Martin C, Yanez JG et al (2017) Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J Mater Sci 52:3048–3061CrossRefGoogle Scholar
  109. 109.
    Song Z, Xiao H, Zhao Y (2014) Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohydr Polym 111:442–448CrossRefGoogle Scholar
  110. 110.
    Syverud K, Stenius P (2008) Strength and barrier properties of MFC films. Cellulose 16:75–85CrossRefGoogle Scholar
  111. 111.
    Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crops Prod 97:664–671CrossRefGoogle Scholar
  112. 112.
    Ferrer A, Pal L, Hubbe M (2017) Nanocellulose in packaging: Advances in barrier layer technologies. Ind Crops Prod 95:574–582CrossRefGoogle Scholar
  113. 113.
    Hubbe MA, Ferrer A, Tyagi P et al (2017) Nanocellulose in thin films, coatings, and plies for packaging applications: a review. BioResources 12:2143–2233Google Scholar
  114. 114.
    Lavoine N, Desloges I, Dufresne A et al (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefGoogle Scholar
  115. 115.
    Nagy E (2019) Chapter 3—Mass transport through a membrane layer. In: Nagy E (ed) Basic equations of mass transport through a membrane layer, 2nd edn. Elsevier, Netherlands, pp 21–68CrossRefGoogle Scholar
  116. 116.
    Shindo R, Nagai K (2014) Gas separation membranes. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin, pp 1–8Google Scholar
  117. 117.
    Fukuzumi H, Fujisawa S, Saito T et al (2013) Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromol 14:1705–1709CrossRefGoogle Scholar
  118. 118.
    Fujisawa S, Okita Y, Fukuzumi H et al (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84:579–583CrossRefGoogle Scholar
  119. 119.
    Rodionova G, Saito T, Lenes M et al (2012) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose 19:705–711CrossRefGoogle Scholar
  120. 120.
    Lavoine N, Bras J, Desloges I (2014) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci 131:40106Google Scholar
  121. 121.
    Chowdhury R, Nuruddin MD, Clarkson C et al (2018) Cellulose nanocrystal (CNC) coatings with controlled anisotropy as high-performance gas barrier films. ACS Appl Mater InterfacesGoogle Scholar
  122. 122.
    Aulin C, Gallstedt M, Lindstrom T (2010) Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17:559–574CrossRefGoogle Scholar
  123. 123.
    Herrera MA, Mathew AP, Oksman K (2017) Barrier and mechanical properties of plasticized and cross-linked nanocellulose coatings for paper packaging applications. Cellulose 24:3969–3980CrossRefGoogle Scholar
  124. 124.
    Li F, Biagioni P, Bollani M et al (2013) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504CrossRefGoogle Scholar
  125. 125.
    Tyagi P, Lucia LA, Hubbe MA et al (2019) Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance. Carbohydr Polym 206:281–288CrossRefGoogle Scholar
  126. 126.
    Beneventi D, Chaussy D, Curtil D et al (2014) Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates. Ind Eng Chem Res 53:10982–10989CrossRefGoogle Scholar
  127. 127.
    Gicquel E, Martin C, Garrido Yanez J et al (2016) Cellulose nanocrystals as new bio-based coating layer for improving fiber-based mechanical and barrier properties. J Mater Sci 52:3048–3061CrossRefGoogle Scholar
  128. 128.
    Fotie G, Amoroso L, Muratore G et al (2018) Carbon dioxide diffusion at different relative humidity through coating of cellulose nanocrystals for food packaging applications. Food Packag Shelf 18:62–70CrossRefGoogle Scholar
  129. 129.
    Cozzolino CA, Cerri G, Brundu A et al (2014) Microfibrillated cellulose (MFC): pullulan bionanocomposite films. Cellulose 21:4323–4335CrossRefGoogle Scholar
  130. 130.
    El-Wakil NA, Hassan EA, Abou-Zeid RE et al (2015) Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydr Polym 124:337–346CrossRefGoogle Scholar
  131. 131.
    LeCorre D, Dufresne A, Rueff M et al (2014) All starch nanocomposite coating for barrier material. J Appl Polym Sci 131:39826CrossRefGoogle Scholar
  132. 132.
    Deng Z, Jung J, Simonsen J et al (2017) Cellulose nanocrystal reinforced chitosan coatings for improving the storability of postharvest pears under both ambient and cold storages. J Food Sci 82:453–462CrossRefGoogle Scholar
  133. 133.
    Azeredo HMC, Miranda KWE, Rosa MF et al (2012) Edible films from alginate-acerola puree reinforced with cellulose. LWT Food Sci Tech 46:294–297CrossRefGoogle Scholar
  134. 134.
    Fakhouri FM, Casari ACA, Mariano M et al (2014) Effect of a gelatin-based edible coating containing cellulose nanocrystals (CNC) on the quality and nutrient retention of fresh strawberries during storage. IOP Conf. Series: Mater Sci Eng 64:012024CrossRefGoogle Scholar
  135. 135.
    Sahraei Khosh Gardesh A, Badii F, Hashemi M et al (2016) Effect of nanochitosan based coating on climacteric behavior and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT Food Sci Tech 70:33–40CrossRefGoogle Scholar
  136. 136.
    Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61CrossRefGoogle Scholar
  137. 137.
    Yang S, Tang Y, Wang J et al (2014) Surface treatment of cellulosic paper with starch-based composites reinforced with nanocrystalline cellulose. Ind Eng Chem Res 53:13980–13988CrossRefGoogle Scholar
  138. 138.
    Taipale T, Osterberg M, Nykanen A et al (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRefGoogle Scholar
  139. 139.
    Seoane IT, Luzi F, Puglia D et al (2018) Enhancement of paperboard performance as packaging material by layering with plasticized polyhydroxybutyrate/nanocellulose coatings. J Appl Polym Sci 135:46872CrossRefGoogle Scholar
  140. 140.
    Tarres Q, Delgado-Aguilar M, Pelach MA et al (2016) Remarkable increase of paper strength by combining enzymatic cellulose nanofibers in bulk and TEMPO-oxidized nanofibers as coating. Cellulose 23:3939–3950CrossRefGoogle Scholar
  141. 141.
    Ridgway CJ, Gane PAC (2011) Constructing NFC-pigment composite surface treatment for enhanced paper stiffness and surface properties. Cellulose 19:547–560CrossRefGoogle Scholar
  142. 142.
    Lavoine N, Desloges I, Sillard C et al (2014) Controlled release and long-term antibacterial activity of chlorhexidine digluconate through the nanoporous network of microfibrillated cellulose. Cellulose 21:4429–4442CrossRefGoogle Scholar
  143. 143.
    Amirabad LM, Jonoobi M, Mousavi NS et al (2018) Improved antifungal activity and stability of chitosan nanofibers using cellulose nanocrystal on banknote papers. Carbohydr Polym 189:229–237CrossRefGoogle Scholar
  144. 144.
    Amini E, Azadfallah M, Layeghi M et al (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570CrossRefGoogle Scholar
  145. 145.
    Cozzolino CA, Nilsson F, Iotti M et al (2013) Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf B Biointerfaces 110:208–216CrossRefGoogle Scholar
  146. 146.
    Lavoine N, Desloges I, Manship B et al (2015) Antibacterial paperboard packaging using microfibrillated cellulose. J Food Sci Technol 52:5590–5600CrossRefGoogle Scholar
  147. 147.
    He YD, Zhang ZL, Xue J et al (2018) Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism. ACS Appl Mater Interfaces 10:5805–5811CrossRefGoogle Scholar
  148. 148.
    Giese M, Blusch LK, Khan MK et al (2014) Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew Chem Int Ed 53:8880–8884CrossRefGoogle Scholar
  149. 149.
    Gao YL, Jin ZX (2018) Iridescent chiral nematic cellulose nanocrystal/polyvinylpyrrolidone nanocomposite films for distinguishing similar organic solvents. Acs Sustainable Chem Eng 6:6192–6202CrossRefGoogle Scholar
  150. 150.
    Song W, Lee JK, Gone MS et al (2018) Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases. ACS Appl Mater Interfaces 10:10353–10361CrossRefGoogle Scholar
  151. 151.
    Gu MY, Jiang CY, Liu DG et al (2016) Cellulose nanocrystal/poly(ethylene glycol) composite as an iridescent coating on polymer substrates: structure-color and interface adhesion. ACS Appl Mater Interfaces 8:32565–32573CrossRefGoogle Scholar
  152. 152.
    Xu MC, Li W, Ma CH et al (2018) Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J Mater Chem C 6:5391–5400CrossRefGoogle Scholar
  153. 153.
    Zhao Y, Gao G, Liu D et al (2017) Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals. Carbohydr Polym 174:39–47CrossRefGoogle Scholar
  154. 154.
    Chen L, Lai C, Marchewka R et al (2016) Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications. Nanoscale 8:13288–13296CrossRefGoogle Scholar
  155. 155.
    Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172CrossRefGoogle Scholar
  156. 156.
    Chen Q, Garcia RP, Munoz J et al (2015) Cellulose nanocrystals-bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: in situ control of mineralization of bioactive glass and enhancement of osteoblastic performance. ACS Appl Mater Interfaces 7:24715–24725CrossRefGoogle Scholar
  157. 157.
    Rashad A, Mohamed-Ahmed S, Ojansivu M et al (2018) Coating 3D printed polycaprolactone scaffolds with nanocellulose promotes growth and differentiation of mesenchymal stem cells. Biomacromol 19:4307–4319CrossRefGoogle Scholar
  158. 158.
    Dugan JM, Collins RF, Gough JE et al (2013) Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomater 9:4707–4715CrossRefGoogle Scholar
  159. 159.
    Dugan JM, Gough JE, Eichhorn SJ (2010) Directing the morphology and differentiation of skeletal muscle cells using oriented cellulose nanowhiskers. Biomacromol 11:2498–2504CrossRefGoogle Scholar
  160. 160.
    Meftahi A, Khajavi R, Rashidi A et al (2010) The effects of cotton gauze coating with microbial cellulose. Cellulose 17:199–204CrossRefGoogle Scholar
  161. 161.
    Hakkarainen T, Koivuniemi R, Kosonen M et al (2016) Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Controlled Release 244(Part B):292–301CrossRefGoogle Scholar
  162. 162.
    Grüneberger F, Künniger T, Huch A et al (2015) Nanofibrillated cellulose in wood coatings: dispersion and stabilization of ZnO as UV absorber. Prog Org Coat 87:112–121CrossRefGoogle Scholar
  163. 163.
    Vardanyan V, Galstian T, Riedl B (2014) Effect of addition of cellulose nanocrystals to wood coatings on color changes and surface roughness due to accelerated weathering. J Coat Technol Res 12:247–258CrossRefGoogle Scholar
  164. 164.
    Planes M, Brand J, Lewandowski S et al (2016) Improvement of the thermal and optical performances of protective polydimethylsiloxane space coatings with cellulose nanocrystal additives. ACS Appl Mater Interfaces 8:28030–28039CrossRefGoogle Scholar
  165. 165.
    Yoo Y, Youngblood JP (2017) Tung oil wood finishes with improved weathering, durability, and scratch performance by addition of cellulose nanocrystals. ACS Appl Mater Interfaces 9:24936–24946CrossRefGoogle Scholar
  166. 166.
    Tan Y, Liu Y, Chen W et al (2016) Homogeneous dispersion of cellulose nanofibers in waterborne acrylic coatings with improved properties and unreduced transparency. ACS Sustain Chem Eng 4:3766–3772CrossRefGoogle Scholar
  167. 167.
    Virtanen S, Jämsä S, Talja R et al (2017) Chemically modified cellulose nanofibril as an additive for two-component polyurethane coatings. J Appl Polym Sci 134Google Scholar
  168. 168.
    Kaboorani A, Auclair N, Riedl B et al (2017) Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture. Prog Org Coat 104:91–96CrossRefGoogle Scholar
  169. 169.
    Jabbar A, Militký J, Ali A et al (2017) Mechanical behavior of nanocellulose coated jute/green epoxy composites. IOP Conf Series: Mater Sci Eng 254CrossRefGoogle Scholar
  170. 170.
    Hubmann M, Kong X, Curtis JM (2019) Kinetic stabilization of cellulose nanocrystals in a photocurable prepolymer for application as an adhesion promoter in UV-curable coatings. Prog Org Coat 129:101–115CrossRefGoogle Scholar
  171. 171.
    Veigel S, Lems E-M, Grüll G et al (2017) Simple green route to performance improvement of fully bio-based linseed oil coating using nanofibrillated cellulose. Polymers 9:425CrossRefGoogle Scholar
  172. 172.
    Auclair N, Kaboorani A, Riedl B et al (2018) Influence of modified cellulose nanocrystals (CNC) on performance of bionanocomposite coatings. Prog Org Coat 123:27–34CrossRefGoogle Scholar
  173. 173.
    Cheng D, Wen YB, An XY et al (2016) TEMPO-oxidized cellulose nanofibers (TOCNs) as a green reinforcement for waterborne polyurethane coating (WPU) on wood. Carbohydr Polym 151:326–334CrossRefGoogle Scholar
  174. 174.
    Bridarolli A, Odlyha M, Nechyporchuk O et al (2018) Evaluation of the adhesion and performance of natural consolidants for cotton canvas conservation. ACS Appl Mater Interfaces 10:33652–33661CrossRefGoogle Scholar
  175. 175.
    Kolman K, Nechyporchuk O, Persson M et al (2018) Combined nanocellulose/nanosilica approach for multiscale consolidation of painting canvases. ACS Appl Nano Mater 1:2036–2040CrossRefGoogle Scholar
  176. 176.
    Nechyporchuk O, Kolman K, Bridarolli A et al (2018) On the potential of using nanocellulose for consolidation of painting canvases. Carbohydr Polym 194:161–169CrossRefGoogle Scholar
  177. 177.
    Volkel L, Ahn K, Hahner U et al (2017) Nano meets the sheet: adhesive-free application of nanocellulosic suspensions in paper conservation. Heritage Sci 5:23CrossRefGoogle Scholar
  178. 178.
    Cataldi A, Berglund L, Deflorian F et al (2015) A comparison between micro- and nanocellulose-filled composite adhesives for oil paintings restoration. Nanocomposites 1:195–203CrossRefGoogle Scholar
  179. 179.
    Santos SM, Carbajo JM, Quintana E et al (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181CrossRefGoogle Scholar
  180. 180.
    Santos SM, Carbajo JM, Gomez N et al (2016) Use of bacterial cellulose in degraded paper restoration. Part I: application on model papers. J Mater Sci 51:1541–1552CrossRefGoogle Scholar
  181. 181.
    Wu SQ, Li MY, Fang BS et al (2012) Reinforcement of vulnerable historic silk fabrics with bacterial cellulose film and its light aging behavior. Carbohydr Polym 88:496–501CrossRefGoogle Scholar
  182. 182.
    Wijesena RN, Tissera N, Perera R et al (2014) Side selective surface modification of chitin nanofibers on anionically modified cotton fabrics. Carbohydr Polym 109:56–63CrossRefGoogle Scholar
  183. 183.
    Prathapan R, Glatz BA, Ghosh AK et al (2019) Enhancing printing resolution on hydrophobic polymer surfaces using patterned coatings of cellulose nanocrystals. Langmuir 35:7155–7160CrossRefGoogle Scholar
  184. 184.
    Kim Y, McCoy LT, Lee E et al (2017) Environmentally sound textile dyeing technology with nanofibrillated cellulose. Green Chem 19:4031–4035CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Sustainable Functional Biomaterials Laboratory, Department of Wood ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations