Advertisement

The Use of Nano-Polysaccharides in Biomedical Applications

  • Daesung Kim
  • Muhammad Shahidul Islam
  • Michael K. C. TamEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 15)

Abstract

Nano-polysaccharides (NPs) are materials that have been used to sustain the ecological systems without us knowing their importance. In recent years, NPs are being exploited in various applications, such as in the treatment of diseases and the delivery of therapeutics, offering solutions that impact society. Nanocellulose, chitin/chitosan, and starch nanoparticles possess attractive properties for biomedical applications as they are biocompatible, biodegradable, negligible cytotoxicity, abundant surface functional groups that can be utilized for further chemical modifications. This chapter discusses the synthesis, characterization and applications of nano-polysaccharides in medical related applications, such as controlled drug release and gene delivery, bioimaging, biosensor, biocatalyst, antibacterial, and tissue engineering.

Keywords

Drug delivery Biotechnology Antibacterial action Cell cultivation 

References

  1. 1.
    Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30:592–599CrossRefGoogle Scholar
  2. 2.
    Debele TA, Mekuria SL, Tsai HC (2016) Polysaccharide based nanogels in the drug delivery system: application as the carrier of pharmaceutical agents. Mater Sci Eng C 68:964–981CrossRefGoogle Scholar
  3. 3.
    Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18:241–268CrossRefGoogle Scholar
  4. 4.
    Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037CrossRefGoogle Scholar
  5. 5.
    Swierczewska M, Han HS, Kim K et al (2016) Polysaccharide-based nanoparticles for theranostic nanomedicine. Adv Drug Deliv Rev 99:70–84CrossRefGoogle Scholar
  6. 6.
    García-González CA, Alnaief M, Smirnova I (2011) Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohydr Polym 86:1425–1438CrossRefGoogle Scholar
  7. 7.
    Mehling T, Smirnova I, Guenther U et al (2009) Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids 355:2472–2479CrossRefGoogle Scholar
  8. 8.
    Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662CrossRefGoogle Scholar
  9. 9.
    Arora D, Rawal RK, Shankar R et al (2016) Polysaccharides based nanomaterials for targeted anti-cancer drug delivery. J Drug Target 25:1–16Google Scholar
  10. 10.
    Saravanakumar G, Jo D-G, Park JH (2012) Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging. Curr Med Chem 19:3212CrossRefGoogle Scholar
  11. 11.
    Zhang N, Wardwell PR, Bader RA (2013) Polysaccharide-based micelles for drug delivery. Pharmaceutics 5:329–352CrossRefGoogle Scholar
  12. 12.
    Hu B, Huang Q (2013) Biopolymer based nano-delivery systems for enhancing bioavailability of nutraceuticals. Chin J Polym Sci 31:1190CrossRefGoogle Scholar
  13. 13.
    Nitta SK, Numata K (2013) Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int J Mol Sci 14(1):1629–1654CrossRefGoogle Scholar
  14. 14.
    Peng B, Tang J, Wang P et al (2018) Rheological properties of cellulose nanocrystal-polymeric systems. Cellulose 25:3229–3240CrossRefGoogle Scholar
  15. 15.
    Islam MS, Chen L, Sisler J et al (2018) Cellulose nanocrystal (CNC)–inorganic hybrid systems: synthesis, properties and applications. J Mater Chem B 6:864–883CrossRefGoogle Scholar
  16. 16.
    Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci Nano 5:623–658CrossRefGoogle Scholar
  17. 17.
    Song Y, Zhang L, Gan W et al (2011) Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids Surf B Biointerfaces 83:313–320CrossRefGoogle Scholar
  18. 18.
    Tang J, Sisler J, Grishkewich N et al (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409CrossRefGoogle Scholar
  19. 19.
    Grishkewich N, Mohammed N, Tang J et al (2017) Recent advances in the application of cellulose nanocrystals. Curr Opin Colloid Interface Sci 29:32–45CrossRefGoogle Scholar
  20. 20.
    Shukla RK, Tiwari A (2012) Carbohydrate polymers: applications and recent advances in delivering drugs to the colon. Carbohydr Polym 88:399–416CrossRefGoogle Scholar
  21. 21.
    Luong JHT, Lam E, Leung ACW et al (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol 30:283–290CrossRefGoogle Scholar
  22. 22.
    Li Z, Xu W, Zhang C et al (2015) Self-assembled lysozyme/carboxymethylcellulose nanogels for delivery of methotrexate. Int J Biol Macromol 75:166–172CrossRefGoogle Scholar
  23. 23.
    Tan J, Kang H, Liu R et al (2011) Dual-stimuli sensitive nanogels fabricated by self-association of thiolated hydroxypropyl cellulose. Polym Chem 2:672–678CrossRefGoogle Scholar
  24. 24.
    Hu B, Ting Y, Zeng X et al (2012) Cellular uptake and cytotoxicity of chitosan–caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr Polym 89:362–370CrossRefGoogle Scholar
  25. 25.
    Ghimire A, Kasi RM, Kumar CV (2014) Proton-coupled protein binding: controlling lysozyme/poly(acrylic acid) interactions with pH. J Phys Chem B 118:5026–5033CrossRefGoogle Scholar
  26. 26.
    Li Z, Xu W, Xiong W et al (2015) Curcumin encapsulated in the complex of lysozyme/carboxymethylcellulose and implications for the antioxidant activity of curcumin. Food Res Int 75:98–105CrossRefGoogle Scholar
  27. 27.
    Deng H, Li B, Peng Z et al (2012) Nanogels fabricated by lysozyme and sodium carboxymethyl cellulose for 5-fluorouracil controlled release. Int J Pharm 441:721–727Google Scholar
  28. 28.
    Qian H, Wang X, Yuan K et al (2014) Delivery of doxorubicin in vitro and in vivo using bio-reductive cellulose nanogels. Biomater Sci 2:220–232CrossRefGoogle Scholar
  29. 29.
    Rahimian K, Wen Y, Oh JK (2015) Redox-responsive cellulose-based thermoresponsive grafted copolymers and in-situ disulfide crosslinked nanogels. Polymer 72:387–394CrossRefGoogle Scholar
  30. 30.
    Wen Y, Oh JK (2015) Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf B Biointerfaces 133:246–253CrossRefGoogle Scholar
  31. 31.
    Wang H, He J, Zhang M et al (2015) A new pathway towards polymer modified cellulose nanocrystals via a “grafting onto” process for drug delivery. Polym Chem 6:4206–4209CrossRefGoogle Scholar
  32. 32.
    You J, Cao J, Zhao Y et al (2016) Improved mechanical properties and sustained release behavior of cationic cellulose nanocrystals reinforced cationic cellulose injectable hydrogels. Biomacromolecules 17:2839–2848CrossRefGoogle Scholar
  33. 33.
    Lin N, Gèze A, Wouessidjewe D et al (2016) Biocompatible double-membrane hydrogels from cationic cellulose nanocrystals and anionic alginate as complexing drugs codelivery. ACS Appl Mater Interfaces 8:6880–6889CrossRefGoogle Scholar
  34. 34.
    Dong S, Cho HJ, Lee YW et al (2014) Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 15:1560–1567CrossRefGoogle Scholar
  35. 35.
    Ikkala O, Kontturi E, Rosilo H et al (2014) Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding. Nanoscale 6:11871–11881CrossRefGoogle Scholar
  36. 36.
    Cihova M, Altanerova V, Altaner C (2011) Stem cell based cancer gene therapy. Mol Pharm 8:1480–1487CrossRefGoogle Scholar
  37. 37.
    Hu H, Yuan W, Liu FS et al (2015) Redox-responsive polycation-functionalized cotton cellulose nanocrystals for effective cancer treatment. ACS Appl Mater Interfaces 7:8942–8951CrossRefGoogle Scholar
  38. 38.
    Hu H, Hou XJ, Wang XC et al (2016) Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications. Polym Chem 7:3107–3116CrossRefGoogle Scholar
  39. 39.
    Son Y,  Jang JS,  Cho YW et al (2003) Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release 91 (1-2):135-145CrossRefGoogle Scholar
  40. 40.
    Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322CrossRefGoogle Scholar
  41. 41.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28CrossRefGoogle Scholar
  42. 42.
    Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367CrossRefGoogle Scholar
  43. 43.
    Shanmuganathan R, Edison TNJI, LewisOscar F et al (2019) Chitosan nanopolymers: an overview of drug delivery against cancer. Int J Biol Macromol 130:727–736CrossRefGoogle Scholar
  44. 44.
    Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62:3–11CrossRefGoogle Scholar
  45. 45.
    Yu S, Xu X, Feng J et al (2019) Chitosan and chitosan coating nanoparticles for the treatment of brain disease. Int J Pharm 560:282–293CrossRefGoogle Scholar
  46. 46.
    Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469CrossRefGoogle Scholar
  47. 47.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99CrossRefGoogle Scholar
  48. 48.
    Kumar MNVR, Muzzarelli RAA, Muzzarelli C et al (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084CrossRefGoogle Scholar
  49. 49.
    Anitha A, Sowmya S, Kumar PTS et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  50. 50.
    Van der Lubben IM, Verhoef JC, Borchard G et al (2001) Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur J Pharm Sci 14:201–207CrossRefGoogle Scholar
  51. 51.
    Hejazi R, Amiji M (2003) Chitosan-based gastrointestinal delivery systems. J Control Release 89:151–165CrossRefGoogle Scholar
  52. 52.
    Jayakumar R, Prabaharan M, Sudheesh Kumar PT et al (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337CrossRefGoogle Scholar
  53. 53.
    Du J, Dai J, Liu JL et al (2006) Novel pH-sensitive polyelectrolyte carboxymethyl Konjac glucomannan-chitosan beads as drug carriers. React Funct Polym 66:1055–1061CrossRefGoogle Scholar
  54. 54.
    Il’ina AV, Varlamov VP (2005) Chitosan-based polyelectrolyte complexes: a review. Appl Biochem Microbiol 41:5–11CrossRefGoogle Scholar
  55. 55.
    Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63:131–135CrossRefGoogle Scholar
  56. 56.
    Brigger I, Dubernet C, Couvreur P (2012) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 64:24–36CrossRefGoogle Scholar
  57. 57.
    Yu M, Lee I-H, Kim H et al (2008) Conjugated chitosan as a novel platform for oral delivery of paclitaxel. J Med Chem 51:6442–6449CrossRefGoogle Scholar
  58. 58.
    Lee E, Lee J, Jon S (2010) A novel approach to oral delivery of insulin by conjugating with low molecular weight chitosan. Bioconjug Chem 21:1720–1723CrossRefGoogle Scholar
  59. 59.
    Xiong F-L, Gu X-B, Zheng H et al (2012) Preparation, characterization and in vitro release study of a glutathione-dependent polymeric prodrug Cis-3-(9H-purin-6-ylthio)-acrylic acid-graft-carboxymethyl chitosan. Int J Pharm 436:240–247CrossRefGoogle Scholar
  60. 60.
    Yang L, Chen L, Zeng R et al (2010) Synthesis, nanosizing and in vitro drug release of a novel anti-HIV polymeric prodrug: chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg Med Chem 18:117–123CrossRefGoogle Scholar
  61. 61.
    Yang L, Zeng R, Li C et al (2009) Novel synthesis and in vitro drug release of polymeric prodrug: chitosan-O-isopropyl-5′-O-d4T monophosphate conjugate. Bioorg Med Chem Lett 19:2566–2569CrossRefGoogle Scholar
  62. 62.
    Sah AK, Dewangan M, Suresh PK (2019) Potential of chitosan-based carrier for periodontal drug delivery. Colloids Surf B Biointerfaces 178:185–198CrossRefGoogle Scholar
  63. 63.
    Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev 4743–4768CrossRefGoogle Scholar
  64. 64.
    Ghoshal A, Goswami U, Raza A et al (2016) Recombinant sFRP4 bound chitosan–alginate composite nanoparticles embedded with silver nanoclusters for Wnt/β-catenin targeting in cancer theranostics. RSC Adv 85763–85772CrossRefGoogle Scholar
  65. 65.
    Raveendran S, Poulose AC, Yoshida Y et al (2013) Bacterial exopolysaccharide based nanoparticles for sustained drug delivery, cancer chemotherapy and bioimaging. Carbohydr Polym 91:22–32CrossRefGoogle Scholar
  66. 66.
    Hou X, Zhou H, Wang L et al (2017) Multifunctional near-infrared dye-magnetic nanoparticles for bioimaging and cancer therapy. Cancer Lett 390:168–175CrossRefGoogle Scholar
  67. 67.
    Chowdhuri AR, Tripathy S, Haldar C (2015) Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 47:9122–9131CrossRefGoogle Scholar
  68. 68.
    Wang H, Di J, Sun Y et al (2015) Biocompatible PEG-chitosan @ carbon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv Funct Mater 25:5537–5547CrossRefGoogle Scholar
  69. 69.
    Tomak A, Bor G, Muhammed U (2017) BODIPY-conjugated chitosan nanoparticles as a fluorescent probe. Drug Chem Toxicol 40:375–382CrossRefGoogle Scholar
  70. 70.
    Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811CrossRefGoogle Scholar
  71. 71.
    Mahmoud KA, Mena JA, Male KB et al (2010) Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl Mater 2:2924–2932CrossRefGoogle Scholar
  72. 72.
    Guo J, Liu D, Filpponen I et al (2017) Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bioimaging. Biomacromolecules 18:2045–2055CrossRefGoogle Scholar
  73. 73.
    Abitbol T, Palermo A, Moran-Mirabal JM et al (2013) Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents. Biomacromolecules 14:3278–3284CrossRefGoogle Scholar
  74. 74.
    Drogat N, Granet R, Le Morvan C et al (2012) Chlorin-PEI-labeled cellulose nanocrystals: synthesis, characterization and potential application in PDT. Bioorg Med Chem Lett 22:3648–3652CrossRefGoogle Scholar
  75. 75.
    Grate JW, Mo K, Shin Y et al (2015) Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments. Bioconjug Chem 26:593–601CrossRefGoogle Scholar
  76. 76.
    Thakur B, Amarnath CA, Sawant SN (2014) Pectin coated polyaniline nanoparticles for an amperometric glucose biosensor. RSC Adv 77:40917–40923CrossRefGoogle Scholar
  77. 77.
    Elmizadeh H, Soleimani M, Faridbod F et al (2018) Fabrication and optimization of a sensitive tetracycline fluorescent nano-sensor based on oxidized starch polysaccharide biopolymer-capped CdTe/ZnS quantum dots: Box–Behnken design. J Photochem Photobiol A Chem 367:188–199CrossRefGoogle Scholar
  78. 78.
    Edwards JV, Fontenot KR, Prevost NT et al (2016) Preparation, characterization and activity of a peptide-cellulosic aerogel protease sensor from cotton. Sensors 16:1–19CrossRefGoogle Scholar
  79. 79.
    Rejinold NS, Chennazhi KP, Tamura H et al (2011) Multifunctional chitin nanogels for simultaneous drug delivery, bioimaging, and biosensing. ACS Appl Mater 3:3654–3665CrossRefGoogle Scholar
  80. 80.
    Anusha JR, Raj CJ, Cho B et al (2015) Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvaucelii. Sens Actuators B Chem 215:536–543CrossRefGoogle Scholar
  81. 81.
    Singh A, Sinsinbar G, Choudhary M et al (2013) Chemical graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sens Actuators B Chem 185:675–684CrossRefGoogle Scholar
  82. 82.
    Liu S, Kang M, Yan F et al (2015) Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(II) detection. Electrochim Acta 160:64–73CrossRefGoogle Scholar
  83. 83.
    Li G, Xue Q, Feng J et al (2015) Electrochemical biosensor based on nanocomposites film of thiol graphene-thiol chitosan/nano gold for the detection of carcinoembryonic antigen. Electroanalysis 27:1245–1252CrossRefGoogle Scholar
  84. 84.
    Nielsen LJ, Eyley S, Thielemans W et al (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun 46:8929–8931CrossRefGoogle Scholar
  85. 85.
    Chen L, Cao W, Grishkewich N et al (2015) Synthesis and characterization of pH-responsive and fluorescent poly (amidoamine) dendrimer-grafted cellulose nanocrystals. J Colloid Interface Sci 450:101–108CrossRefGoogle Scholar
  86. 86.
    Dong L, Zhang X, Ren S et al (2016) Poly(diallyldimethylammonium chloride)–cellulose nanocrystals supported Au nanoparticles for nonenzymatic glucose sensing. RSC Adv 6:6436–6442CrossRefGoogle Scholar
  87. 87.
    Zhang L, Li Q, Zhou J et al (2012) Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing. Macromol Chem Phys 213:1612–1617CrossRefGoogle Scholar
  88. 88.
    Mehdi S, Min S, Sayed M et al (2019) Lipase-immobilized chitosan-crosslinked magnetic nanoparticle as a biocatalyst for ring opening esterification of itaconic anhydride. Biochem Eng J 143:141–150CrossRefGoogle Scholar
  89. 89.
    Myra F, Manan A, Attan N et al (2018) Insight into the Rhizomucor miehei lipase supported on chitosan-chitin nanowhiskers assisted esterification of eugenol to eugenyl benzoate. J Biotechnol 280:19–30CrossRefGoogle Scholar
  90. 90.
    Dhavale RP, Parit SB, Sahoo SC et al (2018) α-amylase immobilized on magnetic nanoparticles: reusable robust nano-biocatalyst for starch hydrolysisGoogle Scholar
  91. 91.
    Kim M, Cheol S, Sung J et al (2018) Anti-proliferative applications of laccase immobilized on super-magnetic chitosan-functionalized halloysite nanotubes. Int J Biol Macromol 118:228–237CrossRefGoogle Scholar
  92. 92.
    Chandren S, Attan N, Mahat NA et al (2017) Structure and properties of oil palm-based nanocellulose reinforced chitosan nanocomposite for efficient synthesis of butyl butyrate. Carbohydr Polym 176:281–292CrossRefGoogle Scholar
  93. 93.
    Asmat S, Husain Q (2018) Exquisite stability and catalytic performance of immobilized lipase on novel fabricated nanocellulose fused polypyrrole/graphene oxide nanocomposite: characterization and application. Int J Biol Macromol 117:331–341CrossRefGoogle Scholar
  94. 94.
    Rad-Moghadam K, Dehghan N (2014) Application of cellulose/chitosan grafted nano-magnetites as efficient and recyclable catalysts for selective synthesis of 3-indolylindolin-2-ones. J Mol Catal A Chem 392:97–104CrossRefGoogle Scholar
  95. 95.
    Yuan B, Yang XQ, Xue LW et al (2016) A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: synergistic recovery of anthocyanin from fruit and vegetable waste. Bioresour Technol 222:14–23CrossRefGoogle Scholar
  96. 96.
    Koutinas AA, Sypsas V, Kandylis P et al (2012) Nano-tubular cellulose for bioprocess technology development. PLoS ONE 7:e34350CrossRefGoogle Scholar
  97. 97.
    Kumar MN, Gialleli A, Bekatorou A et al (2016) Application of nano/micro-tubular cellulose of Indian origin for alcoholic fermentation and cold pasteurization of contaminated water. LWT Food Sci Technol 69:273–279CrossRefGoogle Scholar
  98. 98.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  99. 99.
    Ates B, Cerkez I (2017) Dual antibacterial functional regenerated cellulose fibers. J Appl Polym Sci 134:1–8CrossRefGoogle Scholar
  100. 100.
    Klevens RM et al (2007) Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Public Health Rep 122:160–166CrossRefGoogle Scholar
  101. 101.
    Hu Z, Gänzle MG (2018) Challenges and opportunities related to the use of chitosan as a food preservative. J Appl Microbiol 307:1–14Google Scholar
  102. 102.
    Chao D, Xin M, Jingru M et al (2019) Chitosan as a preservative for fruits and vegetables: a review on chemistry and antimicrobial properties. J Bioresour Bioprod 4:11–21Google Scholar
  103. 103.
    Raafat D, Sahl H-G (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201CrossRefGoogle Scholar
  104. 104.
    Kong M, Chen XG, Xing K et al (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol 144:51–63CrossRefGoogle Scholar
  105. 105.
    Rabea EI, Badawy MET, Stevens CV et al (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465CrossRefGoogle Scholar
  106. 106.
    Je J-Y, Kim S-K (2006) Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J Agric Food Chem 54:6629–6633CrossRefGoogle Scholar
  107. 107.
    Tao Y, Qian LH, Xie J (2011) Effect of chitosan on membrane permeability and cell morphology of Pseudomonas aeruginosa and Staphylococcus aureus. Carbohydr Polym 86:969–974CrossRefGoogle Scholar
  108. 108.
    Helander IM, Nurmiaho-Lassila EL, Ahvenainen R et al (2001) Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int J Food Microbiol 71:235–244CrossRefGoogle Scholar
  109. 109.
    Liu H, Du Y, Wang X et al (2004) Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol 95:147–155CrossRefGoogle Scholar
  110. 110.
    Raafat D, Von Bargen K, Haas A et al (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773CrossRefGoogle Scholar
  111. 111.
    Shahid-Ul-Islam, Butola BS (2019) Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int J Biol Macromol 121:905–912CrossRefGoogle Scholar
  112. 112.
    Shahid-Ul-Islam, Shahid M, Mohammad F (2013) Green chemistry approaches to develop antimicrobial textiles based on sustainable biopolymers—a review. Ind Eng Chem Res 52:5245–5260CrossRefGoogle Scholar
  113. 113.
    Li P, Kwong TL, Lee DKL et al (2005) Novel core-shell particles with poly(n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer 46:10538–10543CrossRefGoogle Scholar
  114. 114.
    Jung K-H, Huh M-W, Meng W et al (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105:2816–2823CrossRefGoogle Scholar
  115. 115.
    Ivanova NA, Philipchenko AB (2012) Superhydrophobic chitosan-based coatings for textile processing. Appl Surf Sci 263:783–787CrossRefGoogle Scholar
  116. 116.
    Joshi M, Khanna R, Shekhar R et al (2011) Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. J Appl Polym Sci 119:2793–2799CrossRefGoogle Scholar
  117. 117.
    Liu J, Liu C, Liu Y et al (2013) Study on the grafting of chitosan-gelatin microcapsules onto cotton fabrics and its antibacterial effect. Colloids Surf B Biointerfaces 109:103–108CrossRefGoogle Scholar
  118. 118.
    Alonso D, Gimeno M, Sepúlveda-Sánchez JD et al (2010) Chitosan-based microcapsules containing grapefruit seed extract grafted onto cellulose fibers by a non-toxic procedure. Carbohydr Res 345:854–859CrossRefGoogle Scholar
  119. 119.
    Abdel-Mohsen AM, Aly AS, Hrdina R et al (2012) Biomedical textiles through multifunctionalization of cotton fabrics using innovative methoxypolyethylene glycol-n-chitosan graft copolymer. J Polym Environ 20:104–116CrossRefGoogle Scholar
  120. 120.
    Janjic S, Kostic M, Vucinic V et al (2009) Biologically active fibers based on chitosan-coated lyocell fibers. Carbohydr Polym 78:240–246CrossRefGoogle Scholar
  121. 121.
    Sheikh J, Bramhecha I (2018) Multifunctional modification of linen fabric using chitosan-based formulations. Int J Biol Macromol 118:896–902CrossRefGoogle Scholar
  122. 122.
    Suppakul P, Miltz J, Sonneveld K et al (2003) Active packaging technologies with an emphasis on antimicrobial packaging and its applications. J Food Sci 68:408–420CrossRefGoogle Scholar
  123. 123.
    Quintavalla S, Vicini L (2002) Antimicrobial food packaging in meat industry. Meat Sci 62:373–380CrossRefGoogle Scholar
  124. 124.
    Malhotra B, Keshwani A, Kharkwal H (2015) Antimicrobial food packaging: potential and pitfalls. Front Microbiol 6:1–9CrossRefGoogle Scholar
  125. 125.
    Cha DS, Chinnan MS (2004) Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr 44:223–237CrossRefGoogle Scholar
  126. 126.
    Leceta I, Guerrero P, De La Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346CrossRefGoogle Scholar
  127. 127.
    Mujtaba M, Morsi RE, Kerch G et al (2019) Current advancements in chitosan-based film production for food technology: a review. Int J Biol MacromolGoogle Scholar
  128. 128.
    Van Den Broek LAM, Knoop RJI, Kappen FHJ et al (2015) Chitosan films and blends for packaging material. Carbohydr Polym 116:237–242CrossRefGoogle Scholar
  129. 129.
    Jianglian D (2013) Application of chitosan based coating in fruit and vegetable preservation: a review. J Food Process Technol 04:5–8CrossRefGoogle Scholar
  130. 130.
    Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841CrossRefGoogle Scholar
  131. 131.
    Kerch G (2015) Chitosan films and coatings prevent losses of fresh fruit nutritional quality: a review. Trends Food Sci Technol 46:159–166CrossRefGoogle Scholar
  132. 132.
    Xing Y, Xu Q, Li X et al (2016) Chitosan-based coating with antimicrobial agents: preparation, property, mechanism, and application effectiveness on fruits and vegetables. Int J Polym SciGoogle Scholar
  133. 133.
    Leceta I, Peñalba M, Arana P et al (2015) Ageing of chitosan films: effect of storage time on structure and optical, barrier and mechanical properties. Eur Polym J 66:170–179CrossRefGoogle Scholar
  134. 134.
    Siripatrawan U, Vitchayakitti W (2016) Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocoll 61:695–702CrossRefGoogle Scholar
  135. 135.
    Sun L, Sun J, Chen L et al (2017) Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr Polym 163:81–91CrossRefGoogle Scholar
  136. 136.
    Özen İ, Erim FB, Torlak E et al (2017) Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol 101:882–888CrossRefGoogle Scholar
  137. 137.
    Azizi S, Ahmad MB, Ibrahim NA et al (2014) Cellulose nanocrystals/ZnO as a bifunctional reinforcing nanocomposite for poly(vinyl alcohol)/chitosan blend films: fabrication, characterization and properties. Int J Mol Sci 15:11040–11053CrossRefGoogle Scholar
  138. 138.
    Del Nobile MA, Conte A, Attianese I et al (2013) MMT-supported Ag nanoparticles for chitosan nanocomposites: structural properties and antibacterial activity. Carbohydr Polym 102:385–392Google Scholar
  139. 139.
    Vlacha M, Giannakas A, Katapodis P et al (2016) On the efficiency of oleic acid as plasticizer of chitosan/clay nanocomposites and its role on thermo-mechanical, barrier and antimicrobial properties—comparison with glycerol. Food Hydrocoll 57:10–19CrossRefGoogle Scholar
  140. 140.
    Zhang L, Wang H, Jin C et al (2017) Sodium lactate loaded chitosan-polyvinyl alcohol/montmorillonite composite film towards active food packaging. Innov Food Sci Emerg Technol 42:101–108CrossRefGoogle Scholar
  141. 141.
    Moghadas B, Dashtimoghadam E, Mirzadeh H et al (2016) Novel chitosan-based nanobiohybrid membranes for wound dressing applications. RSC Adv 6:7701–7711CrossRefGoogle Scholar
  142. 142.
    Liu Y, Wang S, Lan W (2018) Fabrication of antibacterial chitosan-PVA blended film using electrospray technique for food packaging applications. Int J Biol Macromol 107:848–854CrossRefGoogle Scholar
  143. 143.
    Stoica-Guzun A, Parvulescu O, Stroescu M et al (2015) Chitosan-vanillin composites with antimicrobial properties. Food Hydrocoll 48:62–71CrossRefGoogle Scholar
  144. 144.
    Mohebi E, Shahbazi Y (2017) Application of chitosan and gelatin based active packaging films for peeled shrimp preservation: a novel functional wrapping design. LWT Food Sci Technol 76:108–116CrossRefGoogle Scholar
  145. 145.
    Devlieghere F, Vermeulen A, Debevere J (2004) Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol 21:703–714CrossRefGoogle Scholar
  146. 146.
    Chien PJ, Sheu F, Yang FH (2007) Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng 78:225–229CrossRefGoogle Scholar
  147. 147.
    Sheikhi A, Hayashi J, Eichenbaum J et al (2019) Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 294:53–76CrossRefGoogle Scholar
  148. 148.
    Li J, Cha R, Mou K et al (2018) Nanocellulose-based antibacterial materials. Adv Healthc Mater 7:1–16CrossRefGoogle Scholar
  149. 149.
    Sunasee R, Hemraz U (2018) Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers 6:15CrossRefGoogle Scholar
  150. 150.
    Mou K, Li J, Wang Y et al (2017) 2,3-Dialdehyde nanofibrillated cellulose as a potential material for the treatment of MRSA infection. J Mater Chem B 5:7876–7884CrossRefGoogle Scholar
  151. 151.
    Montanari S, Roumani M, Heux L et al (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671CrossRefGoogle Scholar
  152. 152.
    Cao X, Ding B, Yu J et al (2013) In situ growth of silver nanoparticles on TEMPO-oxidized jute fibers by microwave heating. Carbohydr Polym 92:571–576CrossRefGoogle Scholar
  153. 153.
    Tang J, Lee MFX, Zhang W et al (2014) Dual responsive pickering emulsion stabilized by poly[2-(dimethylamino)ethyl methacrylate] grafted cellulose nanocrystals. Biomacromolecules 15:3052–3060CrossRefGoogle Scholar
  154. 154.
    Morits M, Hynninen V, Nonappa et al (2018) Polymer brush guided templating on well-defined rod-like cellulose nanocrystals. Polym Chem 9:1650–1657CrossRefGoogle Scholar
  155. 155.
    Yi J, Xu Q, Zhang X et al (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16:989–997CrossRefGoogle Scholar
  156. 156.
    Grishkewich N, Akhlaghi SP, Zhaoling Y et al (2016) Cellulose nanocrystal-poly(oligo(ethylene glycol) methacrylate) brushes with tunable LCSTs. Carbohydr Polym 144:215–222CrossRefGoogle Scholar
  157. 157.
    Sunasee R, Burdick JS, Boluk Y et al (2014) Cationic poly(2-aminoethylmethacrylate) and poly(N-(2-aminoethylmethacrylamide)) modified cellulose nanocrystals: synthesis, characterization, and cytotoxicity. Biomacromolecules 16:319–325Google Scholar
  158. 158.
    Bespalova Y, Kwon D, Vasanthan N (2017) Surface modification and antimicrobial properties of cellulose nanocrystals. J Appl Polym Sci 134:1–7CrossRefGoogle Scholar
  159. 159.
    Feese E, Sadeghifar H, Gracz HS et al (2011) Photobactericidal porphyrin-cellulose nanocrystals: synthesis, characterization, and antimicrobial properties. Biomacromolecules 12:3528–3539CrossRefGoogle Scholar
  160. 160.
    Tang J, Song Y, Tanvir S et al (2015) Polyrhodanine coated cellulose nanocrystals: a sustainable antimicrobial agent. ACS Sustain Chem Eng 3:1801–1809CrossRefGoogle Scholar
  161. 161.
    De Castro DO, Bras J, Gandini A et al (2016) Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 137:1–8CrossRefGoogle Scholar
  162. 162.
    Niu X, Liu Y, Song Y et al (2018) Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohydr Polym 183:102–109CrossRefGoogle Scholar
  163. 163.
    Zhang D, Karkooti A, Liu L et al (2018) Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. J Membr Sci 549:350–356CrossRefGoogle Scholar
  164. 164.
    Yang W, Fortunati E, Dominici F et al (2016) Synergic effect of cellulose and lignin nanostructures in PLA based systems for food antibacterial packaging. Eur Polym J 79:1–12CrossRefGoogle Scholar
  165. 165.
    Fernandes SCM, Sadocco P, Alonso-Varona A et al (2013) Bioinspired antimicrobial and biocompatible bacterial cellulose membranes obtained by surface functionalization with aminoalkyl groups. ACS Appl Mater Interfaces 5:3290–3297CrossRefGoogle Scholar
  166. 166.
    Li R, Jiang Q, Ren X et al (2015) Electrospun non-leaching biocombatible antimicrobial cellulose acetate nanofibrous mats. J Ind Eng Chem 27:315–321CrossRefGoogle Scholar
  167. 167.
    Hou A, Zhou M, Wang X (2009) Preparation and characterization of durable antibacterial cellulose biomaterials modified with triazine derivatives. Carbohydr Polym 75:328–332CrossRefGoogle Scholar
  168. 168.
    Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637CrossRefGoogle Scholar
  169. 169.
    Foresti ML, Vázquez A, Boury B (2017) Applications of bacterial cellulose as precursor of carbon and composites with metal oxide, metal sulfide and metal nanoparticles: a review of recent advances. Carbohydr Polym 157:447–467CrossRefGoogle Scholar
  170. 170.
    Bethke K, Palantöken S, Andrei V et al (2018) Functionalized cellulose for water purification, antimicrobial applications, and sensors. Adv Funct Mater 28:1–14CrossRefGoogle Scholar
  171. 171.
    Zhao S-W, Guo C-R, Hu Y-Z et al (2018) The preparation and antibacterial activity of cellulose/ZnO composite: a review. Open Chem 16:9–20CrossRefGoogle Scholar
  172. 172.
    Khan F, Ahmad SR (2013) Polysaccharides and their derivatives for versatile tissue engineering application. Macromol Biosci 13:395–421CrossRefGoogle Scholar
  173. 173.
    Hao Z, Song Z, Huang J et al (2017) The scaffold microenvironment for stem cell based bone tissue engineering. Biomater Sci 5:1382–1392CrossRefGoogle Scholar
  174. 174.
    Costa-Pinto AR, Reis RL, Neves NM (2011) Scaffolds based bone tissue engineering: the role of chitosan. Tissue Eng Part B Rev 17:331–347CrossRefGoogle Scholar
  175. 175.
    Li Z, Ramay HR, Hauch KD et al (2005) Chitosan—alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928CrossRefGoogle Scholar
  176. 176.
    Zhang Y, Reddy J, El-Turki A et al (2008) Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29:4314–4322CrossRefGoogle Scholar
  177. 177.
    Venkatesan J, Qian Z, Ryu B (2011) Preparation and characterization of carbon nanotube-grafted-chitosan—natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577CrossRefGoogle Scholar
  178. 178.
    Misra RDK (2009) Biomimetic chitosan—nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRefGoogle Scholar
  179. 179.
    Zhang Y, Cheng X, Wang J et al (2006) Novel chitosan/collagen scaffold containing transforming growth factor-β 1 DNA for periodontal tissue engineering. Biochem Biophys Res Commun 344:362–369CrossRefGoogle Scholar
  180. 180.
    Yilgor P, Tuzlakoglu K, Reis RL et al (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30:3551–3559CrossRefGoogle Scholar
  181. 181.
    Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:1–19CrossRefGoogle Scholar
  182. 182.
    Liuyun J, Yubao L, Chengdong X (2009) Tissue engineering. J Biomed Sci 10:1–10Google Scholar
  183. 183.
    Pasqui D, Torricelli P, De Cagna M et al (2013) Carboxymethyl cellulose—hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 102:1568–1579CrossRefGoogle Scholar
  184. 184.
    Ninan N, Muthiah M, Park I et al (2013) Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 98:877–885CrossRefGoogle Scholar
  185. 185.
    Sainitya R, Sriram M, Kalyanaraman V et al (2015) Scaffolds containing chitosan/carboxymethyl cellulose/mesoporous wollastonite for bone tissue engineering. Int J Biol Macromol 80:481–488CrossRefGoogle Scholar
  186. 186.
    Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346CrossRefGoogle Scholar
  187. 187.
    Zhou C, Shi Q, Guo W et al (2013) Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater Interfaces 5:3847–3854CrossRefGoogle Scholar
  188. 188.
    Henrik B, Esguerra M, Delbro D et al (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2:320–330CrossRefGoogle Scholar
  189. 189.
    Zaborowska M, Bodin A, Bäckdahl H et al (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6:2540–2547CrossRefGoogle Scholar
  190. 190.
    Fang B, Wan Y, Tang T et al (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15:1091–1098CrossRefGoogle Scholar
  191. 191.
    Huang Y, Wang J, Yang F et al (2017) Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater Sci Eng C 75:1034–1041CrossRefGoogle Scholar
  192. 192.
    Gomes ME, Azevedo HS, Moreira AR et al (2008) Starch–poly(ε-caprolactone) and starch–poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen Med 2:243–252CrossRefGoogle Scholar
  193. 193.
    Rodrigues AI, Gomes ME, Leonor IB et al (2012) Bioactive starch-based scaffolds and human adipose stem cells are a good combination for bone tissue engineering. Acta Biomater 8:3765–3776CrossRefGoogle Scholar
  194. 194.
    Martins A, Chung S, Pedro AJ et al (2009) Hierarchical starch-based fibrous scaffold for bone tissue engineering applications. J Tissue Eng Regen Med 37–42CrossRefGoogle Scholar
  195. 195.
    Marques AP, Reis RL (2005) Hydroxyapatite reinforcement of different starch-based polymers affects osteoblast-like cells adhesion/spreading and proliferation. Mater Sci Eng C 25:215–229CrossRefGoogle Scholar
  196. 196.
    Fuchs S, Ghanaati S, Orth C et al (2009) Contribution of outgrowth endothelial cells from human peripheral blood on in vivo vascularization of bone tissue engineered constructs based on starch polycaprolactone scaffolds. Biomaterials 30:526–534CrossRefGoogle Scholar
  197. 197.
    Slgado AJ, Coutinho OP, Reis RL et al (2006) In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res Part A 80A:983–989CrossRefGoogle Scholar
  198. 198.
    Wu D, Samanta A, Srivastava RK et al (2017) Starch-derived nanographene oxide paves the way for electrospinnable and bioactive starch scaffolds for bone tissue engineering. Biomacromolecules 18:1582–1591CrossRefGoogle Scholar
  199. 199.
    Nourmohammadi J, Shahriarpanah S, Asadzadehzanjani N et al (2016) Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications. Starch/Staerke 68:1275–1281CrossRefGoogle Scholar
  200. 200.
    Kang R, Marui T, Ghivizzani SC et al (1997) Ex vivo gene transfer to chondrocytes in full-thickness articular cartilage defects: a feasibility study. Osteoarthr Cartil 5:139–143CrossRefGoogle Scholar
  201. 201.
    Brittberg M, Lindahl A, Nilsson A et al (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895CrossRefGoogle Scholar
  202. 202.
    Biji Balakrishnan, R. Banerjee, (2011) Biopolymer-Based Hydrogels for Cartilage Tissue Engineering. Chemical Reviews 111 (8):4453-4474CrossRefGoogle Scholar
  203. 203.
    Francis Suh JK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefGoogle Scholar
  204. 204.
    Jin R, Moreira Teixeira LS, Dijkstra PJ et al (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551CrossRefGoogle Scholar
  205. 205.
    Sadeghi D, Karbasi S, Razavi S et al (2016) Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci 133:1–9CrossRefGoogle Scholar
  206. 206.
    Kashi M, Baghbani F, Moztarzadeh F et al (2018) Green synthesis of degradable conductive thermosensitive oligopyrrole/chitosan hydrogel intended for cartilage tissue engineering. Int J Biol Macromol 107:1567–1575CrossRefGoogle Scholar
  207. 207.
    Bhardwaj N, Nguyen QT, Chen AC et al (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32:5773–5781CrossRefGoogle Scholar
  208. 208.
    Whu SW, Hung KC, Hsieh KH et al (2013) In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C 33:2855–2863CrossRefGoogle Scholar
  209. 209.
    Naseri N, Deepa B, Mathew AP et al (2016) Nanocellulose-based interpenetrating polymer network (IPN) hydrogels for cartilage applications. Biomacromolecules 17:3714–3723CrossRefGoogle Scholar
  210. 210.
    Markstedt K, Mantas A, Tournier I et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496CrossRefGoogle Scholar
  211. 211.
    Nguyen D, Hgg DA, Forsman A et al (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7:1–10CrossRefGoogle Scholar
  212. 212.
    Feldmann EM, Sundberg JF, Bobbili B et al (2013) Description of a novel approach to engineer cartilage with porous bacterial nanocellulose for reconstruction of a human auricle. J Biomater Appl 28:626–640CrossRefGoogle Scholar
  213. 213.
    Nimeskern L, Martínez Ávila H, Sundberg J et al (2013) Mechanical evaluation of bacterial nanocellulose as an implant material for ear cartilage replacement. J Mech Behav Biomed Mater 22:12–21CrossRefGoogle Scholar
  214. 214.
    Martínez Ávila H, Schwarz S, Feldmann EM et al (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435CrossRefGoogle Scholar
  215. 215.
    Fu L, Zhou P, Zhang S, Yang G (2013) Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater Sci Eng C 33:2995–3000CrossRefGoogle Scholar
  216. 216.
    Keskin Z, Sendemir Urkmez A et al (2017) Novel keratin modified bacterial cellulose nanocomposite production and characterization for skin tissue engineering. Mater Sci Eng C 75:1144–1153CrossRefGoogle Scholar
  217. 217.
    Azarniya A, Eslahi N, Mahmoudi N et al (2016) Effect of graphene oxide nanosheets on the physico-mechanical properties of chitosan/bacterial cellulose nanofibrous composites. Compos Part A Appl Sci Manuf 85:113–122CrossRefGoogle Scholar
  218. 218.
    Zulkifli FH, Hussain FSJ, Rasad MSBA et al (2014) Nanostructured materials from hydroxyethyl cellulose for skin tissue engineering. Carbohydr Polym 114:238–245CrossRefGoogle Scholar
  219. 219.
    Rasad MSBA, Yusuff MM, Zulkifli FH et al (2017) A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater Sci Eng C 79:151–160CrossRefGoogle Scholar
  220. 220.
    Jung H-I, Choi H, Amirian J et al (2017) In vitro and in vivo evaluation of effectiveness of a novel TEMPO-oxidized cellulose nanofiber-silk fibroin scaffold in wound healing. Carbohydr Polym 177:284–296CrossRefGoogle Scholar
  221. 221.
    Shalumon KT, Anulekha KH, Chennazhi KP et al (2011) Fabrication of chitosan/poly(caprolactone) nanofibrous scaffold for bone and skin tissue engineering. Int J Biol Macromol 48:571–576CrossRefGoogle Scholar
  222. 222.
    Sarkar SD, Farrugia BL, Dargaville TR et al (2013) Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering. J Biomed Mater Res Part A 101:3482–3492CrossRefGoogle Scholar
  223. 223.
    Kumar PTS, Raj NM, Praveen G et al (2013) In vitro and in vivo evaluation of microporous chitosan hydrogel/nanofibrin composite bandage for skin tissue regeneration. Tissue Eng Part A 19:380–392CrossRefGoogle Scholar
  224. 224.
    Hussain A, Collins G, Yip D et al (2013) Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnol Bioeng 110:637–647CrossRefGoogle Scholar
  225. 225.
    Liu Y, Wang S, Zhang R (2017) Composite poly(lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. Int J Biol Macromol 103:1130–1137CrossRefGoogle Scholar
  226. 226.
    Martins AM, Eng G, Caridade SG et al (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15:635–643CrossRefGoogle Scholar
  227. 227.
    Kalishwaralal K, Jeyabharathi S, Sundar K et al (2018) A novel biocompatible chitosan–Selenium nanoparticles (SeNPs) film with electrical conductivity for cardiac tissue engineering application. Mater Sci Eng C 92:151–160CrossRefGoogle Scholar
  228. 228.
    Baei P, Jalili-Firoozinezhad S, Rajabi-Zeleti S et al (2016) Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater Sci Eng C 63:131–141CrossRefGoogle Scholar
  229. 229.
    Chen PH, Liao HC, Hsu SH et al (2015) A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv 5:6932–6939CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Daesung Kim
    • 1
  • Muhammad Shahidul Islam
    • 1
  • Michael K. C. Tam
    • 1
    Email author
  1. 1.Department of Chemical EngineeringWaterloo Institute for Nanotechnology, University of WaterlooWaterlooCanada

Personalised recommendations