Tunable Optical Materials Based on Self-assembly of Polysaccharide Nanocrystals

  • Yuxia Wang
  • Ziyang Chen
  • Juntao Tang
  • Ning LinEmail author
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 15)


Rod-like polysaccharide nanocrystals, cellulose nanocrystal (CNC) and chitin nanocrystal (ChNC), can form the chiral nematic liquid crystal phase in suspensions, which can be preserved in the self-assembly solid materials (films) exhibiting colorful optical behaviors origin from the reflective wavelengths of the light. This chapter covers the studies on the topic of CNC and ChNC-based optical-tunable materials during last ten years including the self-assembly mechanism and liquid crystal behaviors of CNC nanoparticles in suspensions, preparation of optical films based on the pristine CNC and surface-modified CNC, summarization of diverse treatments and approaches to regulate the pitch and optical properties of self-assembly films (external energy fields and additives), and fabrication of mesoporous materials based on the strategy of CNC template. Finally, the self-assembly properties and optical applications of ChNC are discussed in the last section as the comparison with those studies introduced in CNC. The development of optical materials based on polysaccharide nanocrystals is an attracting functional application in the structural color field, and this chapter provides the summarization on the controlling strategy, structural design, regulating approach and mechanism explanation aiming to create the novel inspiration.


Cellulose nanocrystals Chitin nanocrystals Self-assembly Optical materials 



The authors would like to acknowledge the support of the National Natural Science Foundation of China (51603159).


  1. 1.
    Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials, 2nd edn. Berlin/Boston, Walter de Gruyter GmbHCrossRefGoogle Scholar
  2. 2.
    Buining PA, Philipse AP, Lekkerkerker HNW (1994) Phase behavior of aqueous dispersions of colloidal boehmite rods. Langmuir 10:2106–2114CrossRefGoogle Scholar
  3. 3.
    Min Dong X, Kimura T, Revol J-F et al (1996) Effects of ionic strength on the isotropic–chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082CrossRefGoogle Scholar
  4. 4.
    Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–659CrossRefGoogle Scholar
  5. 5.
    Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212CrossRefGoogle Scholar
  6. 6.
    Khandelwal M, Windle A (2014) Origin of chiral interactions in cellulose supra-molecular microfibrils. Carbohydr Polym 106:128–131CrossRefGoogle Scholar
  7. 7.
    Parker RM, Guidetti G, Williams CA et al (2017) The self-assembly of cellulose nanocrystals: hierarchical design of visual appearance. Adv Mater 30:e1704477CrossRefGoogle Scholar
  8. 8.
    Dreher R, Meier G (1973) Optical properties of cholesteric liquid crystals. Phys Rev A 8:1616–1623CrossRefGoogle Scholar
  9. 9.
    Parker RM, Frka-Petesic B, Guidetti G et al (2016) Hierarchical self-assembly of cellulose nanocrystals in a confined geometry. ACS Nano 10:8443–8449CrossRefGoogle Scholar
  10. 10.
    Li Y, Jun-Yan Suen J, Prince E et al (2016) Colloidal cholesteric liquid crystal in spherical confinement. Nat Commun 7:12520CrossRefGoogle Scholar
  11. 11.
    Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32CrossRefGoogle Scholar
  12. 12.
    Schutz C, Van Rie J, Eyley S et al (2018) Effect of source on the properties and behavior of cellulose nanocrystal suspensions. ACS Sustain Chem Eng 6:8317–8324CrossRefGoogle Scholar
  13. 13.
    Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054CrossRefGoogle Scholar
  14. 14.
    Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8CrossRefGoogle Scholar
  15. 15.
    Araki J, Wada M, Kuga S et al (2000) Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16:2413–2415CrossRefGoogle Scholar
  16. 16.
    Schutz C, Agthe M, Fall AB et al (2015) Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 31:6507–6513CrossRefGoogle Scholar
  17. 17.
    Castro-Guerrero CF, Gray DG (2014) Chiral nematic phase formation by aqueous suspensions of cellulose nanocrystals prepared by oxidation with ammonium persulfate. Cellulose 21:2567–2577CrossRefGoogle Scholar
  18. 18.
    He J, Liu S, Li L et al (2017) Lyotropic liquid crystal behavior of carboxylated cellulose nanocrystals. Carbohydr Polym 164:364–369CrossRefGoogle Scholar
  19. 19.
    Nystrom G, Arcari M, Adamcik J et al (2018) Nanocellulose fragmentation mechanisms and inversion of chirality from the single particle to the cholesteric phase. ACS Nano 12:5141–5148CrossRefGoogle Scholar
  20. 20.
    Hasani M, Cranston ED, Westman G et al (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238–2244CrossRefGoogle Scholar
  21. 21.
    Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27CrossRefGoogle Scholar
  22. 22.
    Xu Q, Yi J, Zhang X et al (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837CrossRefGoogle Scholar
  23. 23.
    Yi J, Xu Q, Zhang X et al (2008) Chiral-nematic self-ordering of rod-like cellulose nanocrystals grafted with poly(styrene) in both thermotropic and lyotropic states. Polymer 49:4406–4412CrossRefGoogle Scholar
  24. 24.
    Yi J, Xu Q, Zhang X et al (2009) Temperature-induced chiral nematic phase changes of suspensions of poly(N, N-dimethylaminoethyl methacrylate)-grafted cellulose nanocrystals. Cellulose 16:989–997CrossRefGoogle Scholar
  25. 25.
    Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26:13450–13456CrossRefGoogle Scholar
  26. 26.
    Ye D, Yang J (2015) Ion-responsive liquid crystals of cellulose nanowhiskers grafted with acrylamide. Carbohydr Polym 134:458–466CrossRefGoogle Scholar
  27. 27.
    Azzam F, Heux L, Jean B (2016) Adjustment of the chiral nematic phase properties of cellulose nanocrystals by polymer grafting. Langmuir 32:4305–4312CrossRefGoogle Scholar
  28. 28.
    Min Dong XG, Gray D (1997) Effect of counterions on ordered phase formation in suspensions of charged rod-like cellulose crystallites. Langmuir 13:2404–2409CrossRefGoogle Scholar
  29. 29.
    Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromol 12:167–172CrossRefGoogle Scholar
  30. 30.
    Orts WJ, Godbout L, Marchessault RH et al (1998) Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31:5717–5725CrossRefGoogle Scholar
  31. 31.
    De France KJ, Yager KG, Hoare T et al (2016) Cooperative ordering and kinetics of cellulose nanocrystal alignment in a magnetic field. Langmuir 32:7564–7571CrossRefGoogle Scholar
  32. 32.
    Edgar CD, Gray DG (2002) Influence of dextran on the phase behavior of suspensions of cellulose nanocrystals. Macromolecules 35:7400–7406CrossRefGoogle Scholar
  33. 33.
    Beck-Candanedo S, Viet D, Gray DG (2006) Induced phase separation in low-ionic-strength cellulose nanocrystal suspensions containing high-molecular-weight blue dextrans. Langmuir 22:8690–8695CrossRefGoogle Scholar
  34. 34.
    Beck-Candanedo S, Viet D, Gray DG (2006) Induced phase separation in cellulose nanocrystal suspensions containing ionic dye species. Cellulose 13:629–635CrossRefGoogle Scholar
  35. 35.
    Beck-Candanedo S, Viet D, Gray DG (2007) Triphase equilibria in cellulose nanocrystal suspensions containing neutral and charged macromolecules. Macromolecules 40:3429–3436CrossRefGoogle Scholar
  36. 36.
    Chu G, Vasilyev G, Vilensky R et al (2018) Controlled assembly of nanocellulose-stabilized emulsions with periodic liquid crystal-in-liquid crystal organization. Langmuir 34:13263–13273CrossRefGoogle Scholar
  37. 37.
    Zhou Q, Brumer H, Teeri TT (2009) Self-organization of cellulose nanocrystals adsorbed with xyloglucan oligosaccharide–poly(ethylene glycol)–polystyrene triblock copolymer. Macromolecules 42:5430–5432CrossRefGoogle Scholar
  38. 38.
    Elazzouzi-Hafraoui S, Putaux J-L, Heux L (2009) Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals. J Phys Chem B 113:11069–11075CrossRefGoogle Scholar
  39. 39.
    Tran A, Hamad WY, MacLachlan MJ (2018) Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures. Langmuir 34:646–652CrossRefGoogle Scholar
  40. 40.
    Hewson D, Vukusic P, Eichhorn SJ (2017) Reflection of circularly polarized light and the effect of particle distribution on circular dichroism in evaporation induced self-assembled cellulose nanocrystal thin films. AIP Adv 7:065308CrossRefGoogle Scholar
  41. 41.
    Majoinen J, Kontturi E, Ikkala O et al (2012) SEM imaging of chiral nematic films cast from cellulose nanocrystal suspensions. Cellulose 19:1599–1605CrossRefGoogle Scholar
  42. 42.
    Dumanli AG, van der Kooij HM, Kamita G et al (2014) Digital color in cellulose nanocrystal films. ACS Appl Mater Interfaces 6:12302–12306CrossRefGoogle Scholar
  43. 43.
    Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43:3851–3858CrossRefGoogle Scholar
  44. 44.
    Klockars KW, Tardy BL, Borghei M et al (2018) Effect of anisotropy of cellulose nanocrystal suspensions on stratification, domain structure formation, and structural colors. Biomacromol 19:2931–2943CrossRefGoogle Scholar
  45. 45.
    Hiratani T, Hamad WY, MacLachlan MJ (2017) Transparent depolarizing organic and inorganic films for optics and sensors. Adv Mater 29. Scholar
  46. 46.
    Korolovych VF, Cherpak V, Nepal D et al (2018) Cellulose nanocrystals with different morphologies and chiral properties. Polymer 145:334–347CrossRefGoogle Scholar
  47. 47.
    Dumanli AG, Kamita G, Landman J et al (2014) Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors. Adv Opt Mater 2:646–650CrossRefGoogle Scholar
  48. 48.
    Shrestha S, Diaz JA, Ghanbari S et al (2017) Hygroscopic swelling determination of cellulose nanocrystal (CNC) films by polarized light microscopy digital image correlation. Biomacromol 18:1482–1490CrossRefGoogle Scholar
  49. 49.
    Cherpak V, Korolovych VF, Geryak R et al (2018) Robust chiral organization of cellulose nanocrystals in capillary confinement. Nano Lett 18:6770–6777CrossRefGoogle Scholar
  50. 50.
    Espinha A, Guidetti G, Serrano MC et al (2016) Shape memory cellulose-based photonic reflectors. ACS Appl Mater Interfaces 8:31935–31940CrossRefGoogle Scholar
  51. 51.
    Beck S, Bouchard J, Chauve G et al (2013) Controlled production of patterns in iridescent solid films of cellulose nanocrystals. Cellulose 20:1401–1411CrossRefGoogle Scholar
  52. 52.
    Nguyen TD, Hamad WY, MacLachlan MJ (2013) Tuning the iridescence of chiral nematic cellulose nanocrystals and mesoporous silica films by substrate variation. Chem Commun (Camb) 49:11296–11298CrossRefGoogle Scholar
  53. 53.
    Haywood AD, Davis VA (2016) Effects of liquid crystalline and shear alignment on the optical properties of cellulose nanocrystal films. Cellulose 24:705–716CrossRefGoogle Scholar
  54. 54.
    Rofouie P, Alizadehgiashi M, Mundoor H et al (2018) Self-assembly of cellulose nanocrystals into semi-spherical photonic cholesteric films. Adv Funct Mater 28:1803852CrossRefGoogle Scholar
  55. 55.
    Mu X, Gray DG (2015) Droplets of cellulose nanocrystal suspensions on drying give iridescent 3-D “coffee-stain” rings. Cellulose 22:1103–1107CrossRefGoogle Scholar
  56. 56.
    Gencer A, Schutz C, Thielemans W (2017) Influence of the particle concentration and marangoni flow on the formation of cellulose nanocrystal films. Langmuir 33:228–234CrossRefGoogle Scholar
  57. 57.
    Tardy BL, Ago M, Guo J et al (2017) Optical properties of self-assembled cellulose nanocrystals films suspended at planar-symmetrical interfaces. Small 13:1702084–1702110CrossRefGoogle Scholar
  58. 58.
    Picard G, Simon D, Kadiri Y et al (2012) Cellulose nanocrystal iridescence: a new model. Langmuir 28:14799–14807CrossRefGoogle Scholar
  59. 59.
    Abraham E, Kam D, Nevo Y et al (2016) Highly modified cellulose nanocrystals and formation of epoxy-nanocrystalline cellulose (CNC) nanocomposites. ACS Appl Mater Interfaces 8:28086–28095CrossRefGoogle Scholar
  60. 60.
    Abraham E, Nevo Y, Slattegard R et al (2016) Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials. ACS Sustain Chem Eng 4:1338–1346CrossRefGoogle Scholar
  61. 61.
    Lizundia E, Nguyen T-D, Vilas Jose L et al (2017) Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. J Mater Chem A 5:19184–19194CrossRefGoogle Scholar
  62. 62.
    Natarajan B, Emiroglu C, Obrzut J et al (2017) Dielectric characterization of confined water in chiral cellulose nanocrystal films. ACS Appl Mater Interfaces 9:14222–14231CrossRefGoogle Scholar
  63. 63.
    Lu T, Pan H, Ma J et al (2017) Cellulose nanocrystals/polyacrylamide composites of high sensitivity and cycling performance to gauge humidity. ACS Appl Mater Interfaces 9:18231–18237CrossRefGoogle Scholar
  64. 64.
    Nan F, Nagarajan S, Chen Y et al (2017) Enhanced toughness and thermal stability of cellulose nanocrystal iridescent films by alkali treatment. ACS Sustain Chem Eng 5:8951–8958CrossRefGoogle Scholar
  65. 65.
    Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494CrossRefGoogle Scholar
  66. 66.
    Tang H, Guo B, Jiang H et al (2013) Fabrication and characterization of nanocrystalline cellulose films prepared under vacuum conditions. Cellulose 20:2667–2674CrossRefGoogle Scholar
  67. 67.
    Chen Q, Liu P, Nan F et al (2014) Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique. Biomacromol 15:4343–4350CrossRefGoogle Scholar
  68. 68.
    Cranston ED, Gray DG (2006) Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field. Sci Technol Adv Mater 7:319–321CrossRefGoogle Scholar
  69. 69.
    Frka-Petesic B, Guidetti G, Kamita G et al (2017) Controlling the photonic properties of cholesteric cellulose nanocrystal films with magnets. Adv Mater 29:1701469CrossRefGoogle Scholar
  70. 70.
    Habibi Y, Heim T, Douillard R (2008) Ac electric field-assisted assembly and alignment of cellulose nanocrystals. J Polym Sci, Part B: Polym Phys 46:1430–1436CrossRefGoogle Scholar
  71. 71.
    Aguié-Béghin V, Molinari M, Hambardzumyan A et al (20010) Preparation of ordered films of cellulose nanocrystals. ACS Symp Ser 1019:115–136Google Scholar
  72. 72.
    Frka-Petesic B, Radavidson H, Jean B et al (2017) Dynamically controlled iridescence of cholesteric cellulose nanocrystal suspensions using electric fields. Adv Mater 29:1606208–1606228CrossRefGoogle Scholar
  73. 73.
    Hoeger I, Rojas OJ, Efimenko K et al (2011) Ultrathin film coatings of aligned cellulose nanocrystals from a convective-shear assembly system and their surface mechanical properties. Soft Matter 7:1957CrossRefGoogle Scholar
  74. 74.
    Ličen M, Majaron B, Noh J et al (2016) Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose 23:3601–3609CrossRefGoogle Scholar
  75. 75.
    Tatsumi M, Teramoto Y, Nishio Y (2015) Different orientation patterns of cellulose nanocrystal films prepared from aqueous suspensions by shearing under evaporation. Cellulose 22:2983–2992CrossRefGoogle Scholar
  76. 76.
    Liu Y, Stoeckel D, Gordeyeva K et al (2018) Nanoscale assembly of cellulose nanocrystals during drying and redispersion. ACS Macro Lett 7:172–177CrossRefGoogle Scholar
  77. 77.
    Zhang YP (2012) Nanocrystalline cellulose for covert optical encryption. J Nanophotonics 6:063516CrossRefGoogle Scholar
  78. 78.
    Mu X, Gray DG (2014) Formation of chiral nematic films from cellulose nanocrystal suspensions is a two-stage process. Langmuir 30:9256–9260CrossRefGoogle Scholar
  79. 79.
    Dai S, Prempeh N, Liu D et al (2017) Cholesteric film of Cu(Ii)-doped cellulose nanocrystals for colorimetric sensing of ammonia gas. Carbohydr Polym 174:531–539CrossRefGoogle Scholar
  80. 80.
    Santos MV, Tercjak A, Gutierrez J et al (2017) Optical sensor platform based on cellulose nanocrystals (CNC)—4′-(hexyloxy)-4-biphenylcarbonitrile (HOBC) bi-phase nematic liquid crystal composite films. Carbohydr Polym 168:346–355CrossRefGoogle Scholar
  81. 81.
    Xu M, Li W, Ma C et al (2018) Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings. J Mater Chem C 6:5391–5400CrossRefGoogle Scholar
  82. 82.
    He YD, Zhang ZL, Xue J et al (2018) Biomimetic optical cellulose nanocrystal films with controllable iridescent color and environmental stimuli-responsive chromism. ACS Appl Mater Interfaces 10:5805–5811CrossRefGoogle Scholar
  83. 83.
    Liu P, Guo X, Nan F et al (2017) Modifying mechanical, optical properties and thermal processability of iridescent cellulose nanocrystal films using ionic liquid. ACS Appl Mater Interfaces 9:3085–3092CrossRefGoogle Scholar
  84. 84.
    Song W, Lee JK, Gong MS et al (2018) Cellulose nanocrystal-based colored thin films for colorimetric detection of aldehyde gases. ACS Appl Mater Interfaces 10:10353–10361CrossRefGoogle Scholar
  85. 85.
    Bardet R, Belgacem N, Bras J (2015) Flexibility and color monitoring of cellulose nanocrystal iridescent solid films using anionic or neutral polymers. ACS Appl Mater Interfaces 7:4010–4018CrossRefGoogle Scholar
  86. 86.
    Gu M, Jiang C, Liu D et al (2016) Cellulose nanocrystal/poly(ethylene glycol) composite as an iridescent coating on polymer substrates: structure-color and interface adhesion. ACS Appl Mater Interfaces 8:32565–32573CrossRefGoogle Scholar
  87. 87.
    Yao K, Meng Q, Bulone V et al (2017) Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv Mater 29. Scholar
  88. 88.
    Wang B, Walther A (2015) Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano 9:10637–10646CrossRefGoogle Scholar
  89. 89.
    Zhu B, Merindol R, Benitez AJ et al (2016) Supramolecular engineering of hierarchically self-assembled, bioinspired, cholesteric nanocomposites formed by cellulose nanocrystals and polymers. ACS Appl Mater Interfaces 8:11031–11040CrossRefGoogle Scholar
  90. 90.
    Gao Y, Jin Z (2018) Iridescent chiral nematic cellulose nanocrystal/polyvinylpyrrolidone nanocomposite films for distinguishing similar organic solvents. ACS Sustain Chem Eng 6:6192–6202CrossRefGoogle Scholar
  91. 91.
    De La Cruz JA, Liu Q, Senyuk B et al (2018) Cellulose-based reflective liquid crystal films as optical filters and solar gain regulators. ACS Photonics 5:2468–2477CrossRefGoogle Scholar
  92. 92.
    Cheung CCY, Giese M, Kelly JA et al (2013) Iridescent chiral nematic cellulose nanocrystal/polymer composites assembled in organic solvents. ACS Macro Lett 2:1016–1020CrossRefGoogle Scholar
  93. 93.
    Therien-Aubin H, Lukach A, Pitch N et al (2015) Coassembly of nanorods and nanospheres in suspensions and in stratified films. Angew Chem Int Ed Engl 54:5618–5622CrossRefGoogle Scholar
  94. 94.
    Therien-Aubin H, Lukach A, Pitch N et al (2015) Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles. Nanoscale 7:6612–6618CrossRefGoogle Scholar
  95. 95.
    Vollick B, Kuo P-Y, Thérien-Aubin H et al (2017) Composite cholesteric nanocellulose films with enhanced mechanical properties. Chem Mater 29:789–795CrossRefGoogle Scholar
  96. 96.
    Tatsumi M, Teramoto Y, Nishio Y (2012) Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites. Biomacromol 13:1584–1591CrossRefGoogle Scholar
  97. 97.
    Kelly JA, Shukaliak AM, Cheung CC et al (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Angew Chem Int Ed Engl 52:8912–8916CrossRefGoogle Scholar
  98. 98.
    Cho S, Li Y, Seo M et al (2016) Nanofibrillar stimulus-responsive cholesteric microgels with catalytic properties. Angew Chem Int Ed Engl 55:14014–14018CrossRefGoogle Scholar
  99. 99.
    Giese M, Blusch LK, Khan MK et al (2014) Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew Chem Int Ed Engl 53:8880–8884CrossRefGoogle Scholar
  100. 100.
    Liu Q, Campbell MG, Evans JS et al (2014) Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals. Adv Mater 26:7178–7184CrossRefGoogle Scholar
  101. 101.
    Querejeta-Fernandez A, Chauve G, Methot M et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793CrossRefGoogle Scholar
  102. 102.
    Lukach A, Therien-Aubin H, Querejeta-Fernandez A et al (2015) Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 31:5033–5041CrossRefGoogle Scholar
  103. 103.
    Chu G, Wang X, Yin H et al (2015) Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl Mater Interfaces 7:21797–21806CrossRefGoogle Scholar
  104. 104.
    Qu D, Zhang J, Chu G et al (2016) Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. J Mater Chem C 4:1764–1768CrossRefGoogle Scholar
  105. 105.
    Chu G, Yin H, Jiang H et al (2016) Ultrafast optical modulation of rationally engineered photonic–plasmonic coupling in self-assembled nanocrystalline cellulose/silver hybrid material. J Phys Chem C 120:27541–27547CrossRefGoogle Scholar
  106. 106.
    Chu G, Wang X, Chen T et al (2015) Chiral electronic transitions of YVO4: Eu3+nanoparticles in cellulose based photonic materials with circularly polarized excitation. J Mater Chem C 3:3384–3390CrossRefGoogle Scholar
  107. 107.
    Nguyen T-D, Hamad WY, MacLachlan MJ (2017) Near-IR-sensitive upconverting nanostructured photonic cellulose films. Adv Opt Mater 5:1600514CrossRefGoogle Scholar
  108. 108.
    Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11:4686–4694CrossRefGoogle Scholar
  109. 109.
    Ren Y, Wang T, Chen Z et al (2016) Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCCnanopaper. Appl Surf Sci 385:521–528CrossRefGoogle Scholar
  110. 110.
    Sun J, Zhang C, Yuan Z et al (2017) Composite films with ordered carbon nanotubes and cellulose nanocrystals. J Phys Chem C 121:8976–8981CrossRefGoogle Scholar
  111. 111.
    Pan H, Zhu C, Lu T et al (2017) A chiral smectic structure assembled from nanosheets and nanorods. Chem Commun (Camb) 53:1868–1871CrossRefGoogle Scholar
  112. 112.
    Dujardin E, Blaseby M, Mann S (2003) Synthesis of mesoporous silica by sol–gel mineralisation of cellulose nanorod nematic suspensions. J Mater Chem 13:696–699CrossRefGoogle Scholar
  113. 113.
    Shopsowitz KE, Qi H, Hamad WY et al (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425CrossRefGoogle Scholar
  114. 114.
    Kelly JA, Shopsowitz KE, Ahn JM et al (2012) Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials. Langmuir 28:17256–17262CrossRefGoogle Scholar
  115. 115.
    Kelly JA, Yu M, Hamad WY et al (2013) Large, crack-free freestanding films with chiral nematic structures. Adv Opt Mater 1:295–299CrossRefGoogle Scholar
  116. 116.
    Shopsowitz KE, Hamad WY, MacLachlan MJ (2012) Flexible and iridescent chiral nematic mesoporous organosilica films. J Am Chem Soc 134:867–870CrossRefGoogle Scholar
  117. 117.
    Giese M, De Witt JC, Shopsowitz KE et al (2013) Thermal switching of the reflection in chiral nematic mesoporous organosilica films infiltrated with liquid crystals. ACS Appl Mater Interfaces 5:6854–6859CrossRefGoogle Scholar
  118. 118.
    Wang PX, Hamad WY, MacLachlan MJ (2016) Polymer and mesoporous silica microspheres with chiral nematic order from cellulose nanocrystals. Angew Chem Int Ed 55:12460–12464CrossRefGoogle Scholar
  119. 119.
    Xu YT, Dai Y, Nguyen TD et al (2018) Aerogel materials with periodic structures imprinted with cellulose nanocrystals. Nanoscale 10:3805–3812CrossRefGoogle Scholar
  120. 120.
    Ivanova A, Fattakhova-Rohlfing D, Kayaalp BE et al (2014) Tailoring the morphology of mesoporous titania thin films through biotemplating with nanocrystalline cellulose. J Am Chem Soc 136:5930–5937CrossRefGoogle Scholar
  121. 121.
    Ivanova A, Fravventura MC, Fattakhova-Rohlfing D et al (2015) Nanocellulose-templated porous titania scaffolds incorporating presynthesized titania nanocrystals. Chem Mater 27:6205–6212CrossRefGoogle Scholar
  122. 122.
    Shopsowitz KE, Stahl A, Hamad WY et al (2012) Hard templating of nanocrystalline titanium dioxide with chiral nematic ordering. Angew Chem Int Ed Engl 51:6886–6890CrossRefGoogle Scholar
  123. 123.
    Xu J, Nguyen TD, Xie K et al (2015) Chiral nematic porous germania and germanium/carbon films. Nanoscale 7:13215–13223CrossRefGoogle Scholar
  124. 124.
    Chu G, Xu W, Qu D et al (2014) Chiral nematic mesoporous films of Y2O3: Eu3+ with tunable optical properties and modulated photoluminescence. J Mater Chem C 2:9189–9195CrossRefGoogle Scholar
  125. 125.
    Nguyen T-D, Kelly JA, Hamad WY et al (2015) Magnesiothermic reduction of thin films: towards semiconducting chiral nematic mesoporous silicon carbide and silicon structures. Adv Funct Mater 25:2175–2181CrossRefGoogle Scholar
  126. 126.
    Asefa T (2012) Chiral nematic mesoporous carbons from self-assembled nanocrystalline cellulose. Angew Chem Int Ed Engl 51:2008–2010CrossRefGoogle Scholar
  127. 127.
    Wang Y, Liu T, Lin X et al (2018) Self-templated synthesis of hierarchically porous N-doped carbon derived from biomass for supercapacitors. ACS Sustain Chem Eng 6:13932–13939CrossRefGoogle Scholar
  128. 128.
    Khan MK, Giese M, Yu M et al (2013) Flexible mesoporous photonic resins with tunable chiral nematic structures. Angew Chem Int Ed Engl 52:8921–8924CrossRefGoogle Scholar
  129. 129.
    Khan MK, Hamad WY, Maclachlan MJ (2014) Tunable mesoporous bilayer photonic resins with chiral nematic structures and actuator properties. Adv Mater 26:2323–2328CrossRefGoogle Scholar
  130. 130.
    Khan MK, Bsoul A, Walus K et al (2015) Photonic patterns printed in chiral nematic mesoporous resins. Angew Chem Int Ed Engl 54:4304–4308CrossRefGoogle Scholar
  131. 131.
    Qi H, Shopsowitz KE, Hamad WY et al (2011) Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films. J Am Chem Soc 133:3728–3731CrossRefGoogle Scholar
  132. 132.
    Nguyen T-D, Hamad WY, MacLachlan MJ (2014) CdS Quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials. Adv Funct Mater 24:777–783CrossRefGoogle Scholar
  133. 133.
    Revol JF, Marchessault RH (1993) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15:329–335CrossRefGoogle Scholar
  134. 134.
    Li J, Revol JF, Naranjo E et al (1996) Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int J Biol Macromol 18:177–187CrossRefGoogle Scholar
  135. 135.
    Li J, Revol JF, Marchessault RH (1997) Effect of N-sulfonation on the colloidal and liquid crystal behavior of chitin crystallites. J Colloid Interface Sci 192:447–457CrossRefGoogle Scholar
  136. 136.
    Tzoumaki MV, Moschakis T, Biliaderis CG (2010) Metastability of nematic gels made of aqueous chitin nanocrystal dispersions. Biomacromol 11:175–181CrossRefGoogle Scholar
  137. 137.
    Liu Y, Liu M, Yang S et al (2018) Liquid crystalline behaviors of chitin nanocrystals and their reinforcing effect on natural rubber. ACS Sustain Chem Eng 6:325–336CrossRefGoogle Scholar
  138. 138.
    Liu D, Chang Y, Tian D et al (2018) Lyotropic liquid crystal self-assembly of H2O2-hydrolyzed chitin nanocrystals. Carbohydr Polym 196:66–72CrossRefGoogle Scholar
  139. 139.
    Nge TT, Hori N, Takemura A et al (2003) Synthesis and orientation study of a magnetically aligned liquid-crystal line chitin/poly(acrylic acid) composite. J Polym Sci, Part B: Polym Phys 41:711–714CrossRefGoogle Scholar
  140. 140.
    Nge TT, Hori N, Takemura AK et al (2003) Phase behavior of liquid crystalline chitin/acrylic acid liquid mixture. Langmuir 19:1390–1395CrossRefGoogle Scholar
  141. 141.
    Matsumura S, Kajiyama S, Nishimura T et al (2015) Formation of helically structured chitin/CaCO3 hybrids through an approach inspired by the biomineralization processes of crustacean cuticles. Small 11:5127–5133CrossRefGoogle Scholar
  142. 142.
    Nishimura T, Ito T, Yamamoto Y et al (2008) Macroscopically ordered polymer/CaCO3 hybrids prepared by using a liquid-crystalline template. Angew Chem 120:2842–2845CrossRefGoogle Scholar
  143. 143.
    Alonso B, Belamie E (2010) Chitin-silica nanocomposites by self-assembly. Angew Chem Int Ed Engl 49:8201–8204CrossRefGoogle Scholar
  144. 144.
    Belamie E, Boltoeva MY, Yang K et al (2011) Tunable hierarchical porosity from self-assembled chitin–silica nano-composites. J Mater Chem 21:16997CrossRefGoogle Scholar
  145. 145.
    Boltoeva MY, Dozov I, Davidson P et al (2013) Electric-field alignment of chitin nanorod-siloxane oligomer reactive suspensions. Langmuir 29:8208–8212CrossRefGoogle Scholar
  146. 146.
    Nguyen TD, Shopsowitz KE, MacLachlan MJ (2013) Mesoporous silica and organosilica films templated by nanocrystalline chitin. Chemistry 19:15148–15154CrossRefGoogle Scholar
  147. 147.
    Nguyen T-D, Shopsowitz KE, MacLachlan MJ (2014) Mesoporous nitrogen-doped carbon from nanocrystalline chitin assemblies. J Mater Chem A 2:5915CrossRefGoogle Scholar
  148. 148.
    Sachse A, Hulea V, Kostov KL et al (2012) Efficient mesoporous silica-titania catalysts from colloidal self-assembly. Chem Commun (Camb) 48:10648–10650CrossRefGoogle Scholar
  149. 149.
    Sachse A, Hulea V, Kostov KL et al (2015) Improved silica-titania catalysts by chitin biotemplating. Catal Sci Technol 5:415–427CrossRefGoogle Scholar
  150. 150.
    Sachse A, Cardoso L, Kostov KL et al (2015) Mesoporous alumina from colloidal biotemplating of al clusters. Chemistry 21:3206–3210CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yuxia Wang
    • 1
  • Ziyang Chen
    • 1
  • Juntao Tang
    • 2
  • Ning Lin
    • 1
    Email author
  1. 1.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations