Advertisement

Nanocellulose in High-Value Applications for Reported Trial and Commercial Products

  • Bolang Wu
  • Sunan Wang
  • Juntao Tang
  • Ning LinEmail author
Chapter
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 15)

Abstract

Despite abundant academic studies reported their diverse applications (as discussed in previous chapters), the practical products of nanocellulose are launched only during recent five years by several companies. In view of most cases concerning nanocellulose-based products, this chapter first summarizes the scale-up production of two types nanocelluloses, cellulose nanofibrils and cellulose nanocrystals all over the world. The introduction of various nanocellulose commercial products is based on its properties and functions, including the high mechanical strength and rigidity for composite additives, water retention for personal care products, rheological modification for writing ink, adsorption and barrier for paper and packaging application. It is unfortunate that some critical information and parameters of processing techniques and products can’t be obtained because of the confidential consideration of some companies. However, the commercial products of nanocellulose (particularly in the cases of cellulose nanofibrils) introduced in this chapter can inspire the future commercialization of these renewable nanomaterials for the development of competitive commodity in industry.

Keywords

Cellulose nanocrystals Cellulose nanofibrils High-value application Commercial products 

Notes

Acknowledgements

The authors would like to acknowledge the support of the National Natural Science Foundation of China (51603159).

References

  1. 1.
    Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054CrossRefGoogle Scholar
  2. 2.
    Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100:2259–2264CrossRefGoogle Scholar
  3. 3.
    Siqueira G, Tapin-Lingua S, Bras J et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158CrossRefGoogle Scholar
  4. 4.
    Sirviö JA, Visanko M, Liimatainen H (2016) Acidic deep eutectic solvents as hydrolytic media for cellulose nanocrystal production. Biomacromolecules 17:3025–3032CrossRefGoogle Scholar
  5. 5.
    Turbak A, Snyder F, Sandberg K (1983) Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J Appl Polym Sci 37:815Google Scholar
  6. 6.
    Masuko Sangyo Co Ltd (2018) http://www.masuko.com/English/index.html. Accessed 20 Mar 2019
  7. 7.
    Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761CrossRefGoogle Scholar
  8. 8.
    Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRefGoogle Scholar
  9. 9.
    Wågberg L, Decher G, Norgren M et al (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRefGoogle Scholar
  10. 10.
    Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci Technol 59:1311–1318CrossRefGoogle Scholar
  11. 11.
    CelluForce (2019) https://www.celluforce.com. Accessed 10 Apr 2019
  12. 12.
    Alberta Innovates (2016) https://albertainnovates.ca. Accessed 7 Apr 2019
  13. 13.
    Blue Goose Biorefineries Inc (2012) https://bluegoosebiorefineries.com. Accessed 20 Mar 2019
  14. 14.
    FPInnovations (2012) https://fpinnovations.ca/Pages/index.aspx. Accessed 25 Mar 2019
  15. 15.
    American Process Inc (1995) https://www.americanprocess.com. Accessed 24 Mar 2019
  16. 16.
    USDA Forest Products Laboratory (2012) https://www.fpl.fs.fed.us/index.php. Accessed 10 Apr 2019
  17. 17.
    MoRe Research (2013) http://www.more.se/en. Accessed 6 Apr 2019
  18. 18.
    Melodea Ltd (2018) http://www.melodea.eu. Accessed 22 Mar 2019
  19. 19.
    Performance BioFilaments Inc (2014) http://www.performancebiofilaments.com. Accessed 12 Apr 2019
  20. 20.
    GreenCore Composites Inc (2014) http://www.greencorenfc.com/technology.htm. Accessed 5 Apr 2019
  21. 21.
    Borregaard (2011) https://borregaard.com. Accessed 1 Apr 2019
  22. 22.
    InnventiaAB (2018) http://www.innventia.com. Accessed 10 Apr 2019
  23. 23.
    UPM-Kymmene Ltd (2019) https://www.upm.com. Accessed 24 Mar 2019
  24. 24.
    Stora Enso Ltd (2019) https://www.storaenso.com/en. Accessed 29 Mar 2019
  25. 25.
    VVT (2019) https://www.vttresearch.com. Accessed 9 Apr 2019
  26. 26.
    ZelfoTechnology GmbH (2010) http://www.zelfo-technology.com. Accessed 3 Apr 2019
  27. 27.
    CelluComp (2013) https://www.cellucomp.com. Accessed 27 Mar 2019
  28. 28.
    InTechFibres (2015) http://intechfibres.com. Accessed 21 Mar 2019
  29. 29.
    J. Rettenmaier & Söhne GmbH (2019) https://www.jrs.eu/jrs_en. Accessed 1 Apr 2019
  30. 30.
    Sappi (2019) https://www.sappi.com. Accessed 7 Apr 2019
  31. 31.
    Dai-ichi Kogyo Seiyaku Co Ltd (2003) https://www.dks-web.co.jp. Accessed 5 Apr 2019
  32. 32.
    Daio Paper (2015) https://www.daio-paper.co.jp/en. Accessed 21 Mar 2019
  33. 33.
    Sugino Machine (2001) http://www.sugino.com. Accessed 5 Apr 2019
  34. 34.
    Chuetsu Pulp & Paper (2000) http://www.chuetsu-pulp.co.jp. Accessed 20 Mar 2019
  35. 35.
    Nippon Paper Industries (2001) https://www.nipponpapergroup.com. Accessed 7 Apr 2019
  36. 36.
    Oji Holdings (2019) https://www.ojiholdings.co.jp. Accessed 2 Apr 2019
  37. 37.
    Lee KY (2018) Nanocellulose and sustainability: production, properties, applications, and case studies. CRC Press, FloridaCrossRefGoogle Scholar
  38. 38.
  39. 39.
    Solala I, Volperts A, Andersone A et al (2012) Mechanoradical formation and its effects on birch kraft pulp during the preparation of nanofibrillated cellulose with Masuko refining. Holzforschung 66:477–483CrossRefGoogle Scholar
  40. 40.
    Lehmonen J, Pere J, Hytönen E et al (2016) Effect of cellulose microfibril (CMF) addition on strength properties of middle ply of board. Cellulose 24:1041–1055CrossRefGoogle Scholar
  41. 41.
    Lahtinen P, Liukkonen S, Pere J et al (2014) A comparative study of fibrillated fibers from different mechanical and chemical pulps. BioResources 9:2115–2127CrossRefGoogle Scholar
  42. 42.
    Pöhler T, Lappalainen T, Temmelin T et al (2012) Influence of fibrillation method on the character of nanofibrillated cellulose (NFC). Paper presented at TAPPI international conference on nanotechnology for renewable materials, Montreal, 5–7 June 2012Google Scholar
  43. 43.
    Kargarzadeh H, Mariano M, Huang J et al (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: a review. Polymer 132:368–393CrossRefGoogle Scholar
  44. 44.
    ASICS Company (2018) https://corp.asics.com/en/press/article/2018-06-01-3. Accessed 7 Apr 2019
  45. 45.
    Ideas2cycles Company (2018) http://ideas2cycles.com/prototypes/nanocellulose-bicycle. Accessed 5 Apr 2019
  46. 46.
    The Green Science Alliance Co., Ltd (2018) https://www.nano-sakura.com/product-1?tdsourcetag=s_pcqq_aiomsg. Accessed 4 Apr 2019
  47. 47.
    Darker Company (2019) https://tabletennisshop.com.au/index.php?main_page=page&id=40. Accessed 6 Apr 2019
  48. 48.
    Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16:220–227CrossRefGoogle Scholar
  49. 49.
    Onkyo Company (2016) https://www.jp.onkyo.com/audiovisual/speaker/sc3/index.htm. Accessed 25 Mar 2019
  50. 50.
    Pioneer Corporation (2018) https://pioneer-headphones.com/japanese/se-monitor5. Accessed 8 Apr 2019
  51. 51.
  52. 52.
    Koyo Kasei Co Ltd (2018) https://baraio.jp/shop. Accessed 22 Mar 2019
  53. 53.
  54. 54.
    Dufresne A (2017) Nanocellulose: from nature to high performance tailored materials. Berlin/Boston, Walter de Gruyter GmbH, p 649CrossRefGoogle Scholar
  55. 55.
    Mitsubishi Pencil Co Ltd (2010) https://www.mpuni.co.jp/products/ballpoint_pens/gel/signo_rt/307.html. Accessed 10 Apr 2019
  56. 56.
    Nishijima C, Sakane N, Takeuchi Y (2016) Aqueous ink composition for writing instruments. US patent 0264800A1, Sept 2016Google Scholar
  57. 57.
    Takeuchi Y, Nishijima C, Sakane N (2016) Aqueous ink composition for writing tools. EU patent 3070131A1, Sept 2016Google Scholar
  58. 58.
    Nippon Paper Industries Co Ltd (2001) https://www.nipponpapergroup.com/english/research/organize/cnf.html. Accessed 28 Mar 2019
  59. 59.
    Daio Paper Corp (2018) https://www.elleair.jp/products/clean/kirekira.php. Accessed 28 Mar 2019
  60. 60.
  61. 61.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Chemistry, Chemical Engineering and Life SciencesWuhan University of TechnologyWuhanPeople’s Republic of China
  2. 2.College of Chemistry and Chemical Engineering, Central South UniversityChangshaChina

Personalised recommendations