Advertisement

Carbon Nanotubes in Gene Delivery

  • Md Saquib HasnainEmail author
  • Amit Kumar Nayak
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Essential vaccine delivery issues involve the improper absorption, the likelihood of antigen-caused hypersensitivity, anaphylactic reactions, and adjuvant vaccine hypersensitivity. Several new methods have been tested to enhance the delivery of vaccines, as well as microspheres, liposomes and nanoparticles.

References

  1. K.T. Al-Jamal, L. Gherardini, G. Bardi, A. Nunes, C. Guo, C. Bussy, M.A. Herrero, A. Bianco, M. Prato, K. Kostarelos, Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc. Natl. Acad. Sci. 108, 10952–10957 (2011)CrossRefGoogle Scholar
  2. K.T. Al-Jamal, F.M. Toma, A. Yilmazer, H. Ali-Boucetta, A. Nunes, M.-A. Herrero, B. Tian, A. Eddaoudi, W.T. Al-Jamal, A. Bianco, Enhanced cellular internalization and gene silencing with a series of cationic dendron-multiwalled carbon nanotube: siRNA complexes. FASEB J. 24, 4354–4365 (2010)CrossRefGoogle Scholar
  3. H. Atkinson, R. Chalmers, Delivering the goods: viral and non-viral gene therapy systems and the inherent limits on cargo DNA and internal sequences. Genetica 138, 485–498 (2010)CrossRefGoogle Scholar
  4. G. Bartholomeusz, P. Cherukuri, J. Kingston, L. Cognet, R. Lemos, T.K. Leeuw, L. Gumbiner-Russo, R.B. Weisman, G. Powis, In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1α) using single-walled carbon nanotubes noncovalently coated with siRNA. Nano Res. 2, 279–291 (2009)CrossRefGoogle Scholar
  5. K. Bates, K. Kostarelos, Carbon nanotubes as vectors for gene therapy: past achievements, present challenges and future goals. Adv. Drug Deliv. Rev. 65, 2023–2033 (2013)CrossRefGoogle Scholar
  6. A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes. Chem. Commun. 571–577 (2005)Google Scholar
  7. D. Cai, J.M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T.C. Chiles, D. Carnahan, K. Kempa, Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449 (2005)CrossRefGoogle Scholar
  8. H. Dong, L. Ding, F. Yan, H. Ji, H. Ju, The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32, 3875–3882 (2011)CrossRefGoogle Scholar
  9. L. Gao, L. Nie, T. Wang, Y. Qin, Z. Guo, D. Yang, X. Yan, Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem 7, 239–242 (2006)CrossRefGoogle Scholar
  10. E. Heister, V. Neves, C. Lamprecht, S.R.P. Silva, H.M. Coley, J. McFadden, Drug loading, dispersion stability, and therapeutic efficacy in targeted drug delivery with carbon nanotubes. Carbon 50, 622–632 (2012)CrossRefGoogle Scholar
  11. A. Karmakar, S.M. Bratton, E. Dervishi, A. Ghosh, M. Mahmood, Y. Xu, L.M. Saeed, T. Mustafa, D. Casciano, A. Radominska-Pandya, Ethylenediamine functionalized-single-walled nanotube (f-SWNT)-assisted in vitro delivery of the oncogene suppressor p53 gene to breast cancer MCF-7 cells. Int. J. Nanomed. 6, 1045 (2011)Google Scholar
  12. C. Klumpp, K. Kostarelos, M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta (BBA) Biomembr. 1758, 404–412 (2006)CrossRefGoogle Scholar
  13. J.T. Lanner, J.D. Bruton, Y. Assefaw-Redda, Z. Andronache, S.-J. Zhang, D. Severa, Z.-B. Zhang, W. Melzer, S.-L. Zhang, A. Katz, Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin-mediated glucose uptake in adult skeletal muscle cells. FASEB J. 23, 1728–1738 (2009)CrossRefGoogle Scholar
  14. Y. Liu, D.C. Wu, W.D. Zhang, X. Jiang, C.B. He, T.S. Chung, S.H. Goh, K.W. Leong, Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed. 44, 4782–4785 (2005)CrossRefGoogle Scholar
  15. Z. Liu, M. Winters, M. Holodniy, H. Dai, siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027 (2007)CrossRefGoogle Scholar
  16. J. McCarroll, H. Baigude, C.-S. Yang, T.M. Rana, Nanotubes functionalized with lipids and natural amino acid dendrimers: a new strategy to create nanomaterials for delivering systemic RNAi. Bioconjug. Chem. 21, 56–63 (2009)CrossRefGoogle Scholar
  17. B. Pan, D. Cui, P. Xu, C. Ozkan, G. Feng, M. Ozkan, T. Huang, B. Chu, Q. Li, R. He, Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology 20, 125101 (2009)CrossRefGoogle Scholar
  18. D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004)CrossRefGoogle Scholar
  19. A. Paul, W. Shao, D. Shum-Tim, S. Prakash, The attenuation of restenosis following arterial gene transfer using carbon nanotube coated stent incorporating TAT/DNAAng1+ Vegf nanoparticles. Biomaterials 33, 7655–7664 (2012)CrossRefGoogle Scholar
  20. J.E. Podesta, K.T. Al‐Jamal, M.A. Herrero, B. Tian, H. Ali‐Boucetta, V. Hegde, A. Bianco, M. Prato, K. Kostarelos, Antitumor activity and prolonged survival by carbon‐nanotube‐mediated therapeutic siRNA silencing in a human lung xenograft model. Small 5, 1176–1185 (2009)Google Scholar
  21. W. Qin, K. Yang, H. Tang, L. Tan, Q. Xie, M. Ma, Y. Zhang, S. Yao, Improved GFP gene transfection mediated by polyamidoamine dendrimer-functionalized multi-walled carbon nanotubes with high biocompatibility. Colloids Surf. B 84, 206–213 (2011)CrossRefGoogle Scholar
  22. J. Van den Bossche, B. Tian, A. Nunes, C. Fabbro, A. Bianco, M. Prato, K. Kostarelos, Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. Chem. Commun. 46, 7379–7381 (2010)CrossRefGoogle Scholar
  23. L. Wang, J. Shi, H. Zhang, H. Li, Y. Gao, Z. Wang, H. Wang, L. Li, C. Zhang, C. Chen, Synergistic anticancer effect of RNAi and photothermal therapy mediated by functionalized single-walled carbon nanotubes. Biomaterials 34, 262–274 (2013)CrossRefGoogle Scholar
  24. T. Wang, J.R. Upponi, V.P. Torchilin, Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int. J. Pharm. 427, 3–20 (2012)CrossRefGoogle Scholar
  25. X. Wang, J. Ren, X. Qu, Targeted RNA interference of cyclin A2 mediated by functionalized single‐walled carbon nanotubes induces proliferation arrest and apoptosis in chronic myelogenous leukemia K562 cells. ChemMedChem: Chem. Enabling Drug Discov. 3, 940–945 (2008)CrossRefGoogle Scholar
  26. Z. Zhang, X. Yang, Y. Zhang, B. Zeng, S. Wang, T. Zhu, R.B. Roden, Y. Chen, R. Yang, Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res. 12, 4933–4939 (2006)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PharmacyShri Venkateshwara UniversityAmrohaIndia
  2. 2.Department of PharmaceuticsSeemanta Institute of Pharmaceutical ScienceMayurbhanjIndia

Personalised recommendations