Carbon Nanotubes in Vaccine Delivery

  • Md Saquib HasnainEmail author
  • Amit Kumar Nayak
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Vaccines are medicines intended to produce a definite, active immune reaction in a host that will halt the onset of a disease or reduce the impact of a disease once it has instigated. In infectious illnesses state, almost every vaccine is given prophylactically. These techniques have offered a few of the most imperative improvements in human healthcare over the past century.


  1. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)CrossRefGoogle Scholar
  2. M. Carbone, F. Valentini, R. Caminiti, A. Petrinca, D. Donia, M. Divizia, G. Palleschi, Are PEI-coated SWCNTs conjugated with hepatitis a virus? A Chemical study with SEM, Z-potential, EDXD and RT-PCR. Biomed. Mater. 5, 035001 (2010)CrossRefGoogle Scholar
  3. H. Dumortier, S. Lacotte, G. Pastorin, R. Marega, W. Wu, D. Bonifazi, J.-P. Briand, M. Prato, S. Muller, A. Bianco, Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 6, 1522–1528 (2006)CrossRefGoogle Scholar
  4. R. Dyall, W.B. Bowne, L.W. Weber, J. LeMaoult, P. Szabo, Y. Moroi, G. Piskun, J.J. Lewis, A.N. Houghton, J. Nikolić-Žugić, Heteroclitic immunization induces tumor immunity. J. Exp. Med. 188, 1553–1561 (1998)CrossRefGoogle Scholar
  5. A.M. Farkas, O.J. Finn, Vaccines based on abnormal self-antigens as tumor-associated antigens: immune regulation, in Seminars in Immunology (Elsevier, Amsterdam, 2010), pp 125–131CrossRefGoogle Scholar
  6. T. Fifis, A. Gamvrellis, B. Crimeen-Irwin, G.A. Pietersz, J. Li, P.L. Mottram, I.F. McKenzie, M. Plebanski, Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154 (2004)CrossRefGoogle Scholar
  7. V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J-P. Briand, M. Prato, Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 3050–3051 (2002)Google Scholar
  8. A. Heath, J. Playfair, Cytokines as immunological adjuvants. Vaccine 10, 427–434 (1992)CrossRefGoogle Scholar
  9. A.N. Houghton, J.A. Guevara-Patiño, Immune recognition of self in immunity against cancer. J. Clin. Investig. 114, 468–471 (2004)CrossRefGoogle Scholar
  10. N.W.S. Kam, M. O’Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. 102, 11600–11605 (2005)CrossRefGoogle Scholar
  11. C. Kojima, Design of stimuli-responsive dendrimers. Expert Opin. Drug Deliv. 7, 307–319 (2010)CrossRefGoogle Scholar
  12. N.V. Konduru, Y.Y. Tyurina, W. Feng, L.V. Basova, N.A. Belikova, H. Bayir, K. Clark, M. Rubin, D. Stolz, H. Vallhov, Phosphatidylserine targets single-walled carbon nanotubes to professional phagocytes in vitro and in vivo. Plos One 4, e4398 (2009)CrossRefGoogle Scholar
  13. K. Kostarelos, A. Bianco, M. Prato, Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nanotechnol. 4, 627 (2009)CrossRefGoogle Scholar
  14. K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowski, J. Luangsivilay, S. Godefroy, D. Pantarotto, J.-P. Briand, S. Muller, Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol. 2, 108 (2007)CrossRefGoogle Scholar
  15. P.O. Livingston, G. Ragupathi, Cancer vaccines targeting carbohydrate antigens. Hum. Vaccines 2, 137–143 (2006)CrossRefGoogle Scholar
  16. C.L. Mackall, Spreading the wealth: antigen discovery in adult tumors can help hone the search for pediatric tumor antigens. J. Immunother. 24, 281–282 (2001)CrossRefGoogle Scholar
  17. C.J. Melief, Cancer immunotherapy by dendritic cells. Immunity 29, 372–383 (2008)CrossRefGoogle Scholar
  18. J. Meng, J. Duan, H. Kong, L. Li, C. Wang, S. Xie, S. Chen, N. Gu, H. Xu, Carbon nanotubes conjugated to tumor lysate protein enhance the efficacy of an antitumor immunotherapy. Small 4, 1364–1370 (2008)CrossRefGoogle Scholar
  19. T. Mocan, C. Iancu, Effective colon cancer prophylaxis in mice using embryonic stem cells and carbon nanotubes. Int. J. Nanomed. 6, 1945 (2011)CrossRefGoogle Scholar
  20. P.L. Mottram, D. Leong, B. Crimeen-Irwin, S. Gloster, S.D. Xiang, J. Meanger, R. Ghildyal, N. Vardaxis, M. Plebanski, Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol. Pharm. 4, 73–84 (2007)CrossRefGoogle Scholar
  21. G.M. Mutlu, G.S. Budinger, A.A. Green, D. Urich, S. Soberanes, S.E. Chiarella, G.F. Alheid, D.R. McCrimmon, I. Szleifer, M.C. Hersam, Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. Nano Lett. 10, 1664–1670 (2010)CrossRefGoogle Scholar
  22. D.T. O’Hagan, M.L. MacKichan, M. Singh, Recent developments in adjuvants for vaccines against infectious diseases. Biomol. Eng. 18, 69–85 (2001)CrossRefGoogle Scholar
  23. D. Pantarotto, C.D. Partidos, R. Graff, J. Hoebeke, J.-P. Briand, M. Prato, A. Bianco, Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160–6164 (2003a)CrossRefGoogle Scholar
  24. D. Pantarotto, C.D. Partidos, J. Hoebeke, F. Brown, E. Kramer, J.-P. Briand, S. Muller, M. Prato, A. Bianco, Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol. 10, 961–966 (2003b)CrossRefGoogle Scholar
  25. D.A. Scheinberg, C.H. Villa, F.E. Escorcia, M.R. McDevitt, Conscripts of the infinite armada: systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol. 7, 266 (2010)CrossRefGoogle Scholar
  26. P. Singh, S. Campidelli, S. Giordani, D. Bonifazi, A. Bianco, M. Prato, Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem. Soc. Rev. 38, 2214–2230 (2009)CrossRefGoogle Scholar
  27. P.K. Srivastava, A. Menoret, S. Basu, R.J. Binder, K.L. McQuade, Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8, 657–665 (1998)CrossRefGoogle Scholar
  28. R.M. Steinman, J. Banchereau, Taking dendritic cells into medicine. Nature 449, 419 (2007)CrossRefGoogle Scholar
  29. C.H. Villa, T. Dao, I. Ahearn, N. Fehrenbacher, E. Casey, D.A. Rey, T. Korontsvit, V. Zakhaleva, C.A. Batt, M.R. Philips, Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano 5, 5300–5311 (2011)CrossRefGoogle Scholar
  30. S.D. Xiang, K. Scalzo-Inguanti, G. Minigo, A. Park, C.L. Hardy, M. Plebanski, Promising particle-based vaccines in cancer therapy. Expert. Rev. Vaccines 7, 1103–1119 (2008)CrossRefGoogle Scholar
  31. N. Yandar, G. Pastorin, M. Prato, A. Bianco, M.E. Patarroyo, J.M. Lozano, Immunological profile of a Plasmodium vivax AMA-1 N-terminus peptide-carbon nanotube conjugate in an infected Plasmodium berghei mouse model. Vaccine 26, 5864–5873 (2008)CrossRefGoogle Scholar
  32. M. Zeinali, M. Jammalan, S.K. Ardestani, N. Mosaveri, Immunological and cytotoxicological characterization of tuberculin purified protein derivative (PPD) conjugated to single-walled carbon nanotubes. Immunol. Lett. 126, 48–53 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PharmacyShri Venkateshwara UniversityAmrohaIndia
  2. 2.Department of PharmaceuticsSeemanta Institute of Pharmaceutical ScienceMayurbhanjIndia

Personalised recommendations