Advertisement

Background: Carbon Nanotubes for Targeted Drug Delivery

  • Md Saquib HasnainEmail author
  • Amit Kumar Nayak
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Current researches and developments in the field of nanotechnology have been concentrated in the explorations and exploitations of different novel nanotechnological products or systems for numerous biomedical applications (Nayak et al., Calcium fluoride-based dental nanocomposites, in Applications of Nanocomposite Materials in Dentistry, Elsevier, pp 27–45, 2019; Nayak and Bera, Polysaccharide carriers for drug delivery, Elsevier, pp 615–638, 2019; Rani et al., Applications of nanocomposite materials in dentistry, Elsevier, pp 65–91, 2019; Ray et al., Bioelectronics and medical devices, Elsevier, pp 355–392, 2019).

References

  1. P.M. Ajayan, Nanotubes from carbon. Chem. Rev. 99, 1787–1800 (1999)CrossRefGoogle Scholar
  2. K. Awasthi, A. Srivastava, O. Srivastava, Synthesis of carbon nanotubes. J. Nanosci. Nanotechnol. 5, 1616–1636 (2005)CrossRefGoogle Scholar
  3. R.H. Baughman, A.A. Zakhidov, W.A. De Heer, Carbon nanotubes—the route toward applications. Science 297, 787–792 (2002)CrossRefGoogle Scholar
  4. S. Beg, M. Rizwan, A.M. Sheikh, M.S. Hasnain, K. Anwer, K. Kohli, Advancement in carbon nanotubes: basics, biomedical applications and toxicity. J. Pharm. Pharmacol. 63, 141–163 (2011)CrossRefGoogle Scholar
  5. E. Bekyarova, Y. Ni, E.B. Malarkey, V. Montana, J.L. McWilliams, R.C. Haddon, V. Parpura, Applications of carbon nanotubes in biotechnology and biomedicine. J. Biomed. Nanotechnol. 1, 3–17 (2005)CrossRefGoogle Scholar
  6. A. Bianco, K. Kostarelos, C.D. Partidos, M. Prato, Biomedical applications of functionalised carbon nanotubes. Chem Commun 5, 571–577 (2005a)CrossRefGoogle Scholar
  7. A. Bianco, K. Kostarelos, M. Prato, Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005b)CrossRefGoogle Scholar
  8. A. Brandelli, Nanostructures as promising tools for delivery of antimicrobial peptides. Mini Rev. Med. Chem. 12, 731–741 (2012)CrossRefGoogle Scholar
  9. D. Cai, J.M. Mataraza, Z.-H. Qin, Z. Huang, J. Huang, T.C. Chiles, D. Carnahan, K. Kempa, Z. Ren, Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat. Methods 2, 449 (2005)CrossRefGoogle Scholar
  10. X. Chen, A. Kis, A. Zettl, C.R. Bertozzi, A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. 104, 8218–8222 (2007)CrossRefGoogle Scholar
  11. B. Das, S.O. Sen, R. Maji, A.K. Nayak, K.K. Sen, Transferosomal gel for transdermal delivery of risperidone: formulation optimization and ex vivo permeation. J. Drug. Deliv. Sci. Technol. 38, 59–71 (2017)CrossRefGoogle Scholar
  12. M. Dresselhaus, G. Dresselhaus, J.-C. Charlier, E. Hernandez, Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 362, 2065–2098 (2004)CrossRefGoogle Scholar
  13. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Elsevier, Amsterdam, 1996)Google Scholar
  14. P.J. Harris, Carbon nanotubes and Related Structures: New Materials for the Twenty-First Century (AAPT, 2004)Google Scholar
  15. M.S. Hasnain, A.K. Nayak, Alginates: Versatile Polymers in Biomedical Applications and Therapeutics (CRC Press, Palm Bay, 2019)Google Scholar
  16. M.S. Hasnain, A.K. Nayak, Nanocomposites for improved orthopedic and bone tissue engineering applications, in Applications of Nanocomposite Materials in Orthopedics (Elsevier, 2019b), pp. 145–177Google Scholar
  17. M.S. Hasnain, A.K. Nayak, Recent progress in responsive polymer-based drug delivery systems, in Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications (Elsevier, 2019c), pp. 569–595Google Scholar
  18. M.S. Hasnain, A.K. Nayak, M. Singh, M. Tabish, M.T. Ansari, T.J. Ara, Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release. Int. J. Biol. Macromol. 83, 71–77 (2016)CrossRefGoogle Scholar
  19. M.S. Hasnain, S.A. Ahmad, N. Chaudhary, M.N. Hoda, A.K. Nayak, Biodegradable polymer matrix nanocomposites for bone tissue engineering, in Applications of Nanocomposite Materials in Orthopedics, (Elsevier, 2019a), pp. 1–37Google Scholar
  20. M.S. Hasnain, S.A. Ahmad, M.N. Hoda, S. Rishishwar, P. Rishishwar, A.K. Nayak, Stimuli-responsive carbon nanotubes for targeted drug delivery, in, Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications: Vol. 2: Advanced Nanocarriers for Therapeutics, (Elsevier, 2019b), pp. 321–344Google Scholar
  21. M.S. Hasnain, S.A. Ahmad, N. Chaudhary, M.A. Minhaj, A.K. Nayak, Degradation and failure of dental composite materials, in Applications of Nanocomposite Materials in Dentistry, (Elsevier, 2019c), pp. 108–121Google Scholar
  22. M.S. Hasnain, M.N. Javed, M.S. Alam, P. Rishishwar, S. Rishishwar, S. Ali, A.K. Nayak, S. Beg. Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Mater. Sci. Eng. C. 99, 1105–1114 (2019d)CrossRefGoogle Scholar
  23. H. He, L.A. Pham-Huy, P. Dramou, D. Xiao, P. Zuo, C. Pham-Huy, Carbon nanotubes: applications in pharmacy and medicine. BioMed Res. Int. 2013 (2013)Google Scholar
  24. W. Hoenlein, F. Kreupl, G. Duesberg, A. Graham, M. Liebau, R. Seidel, E. Unger, Carbon nanotubes for microelectronics: status and future prospects. Mater. Sci. Eng. C 23, 663–669 (2003)CrossRefGoogle Scholar
  25. R. Hoffmann, A.A. Kabanov, A.A. Golov, D.M. Proserpio, Homo citans and carbon allotropes: for an ethics of citation. Angew. Chem. Int. Ed. 55, 10962–10976 (2016)CrossRefGoogle Scholar
  26. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56 (1991)CrossRefGoogle Scholar
  27. S. Jana, A. Gangopadhaya, B.B. Bhowmik, A.K. Nayak, A. Mukherjee, Pharmacokinetic evaluation of testosterone-loaded nanocapsules in rats. Int. J. Biol. Macromol. 72, 28–30 (2015)CrossRefGoogle Scholar
  28. S. Jana, N. Maji, A.K. Nayak, K.K. Sen, S.K. Basu, Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohyd. Polym. 98, 870–876 (2013)CrossRefGoogle Scholar
  29. S. Jana, S. Manna, A.K. Nayak, K.K. Sen, S.K. Basu, Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf. B 114, 36–44 (2014)CrossRefGoogle Scholar
  30. J.H. Jung, G.B. Hwang, J.E. Lee, G.N. Bae, Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Langmuir 27, 10256–10264 (2011)CrossRefGoogle Scholar
  31. N.W.S. Kam, Z. Liu, H. Dai, Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 127, 12492–12493 (2005)CrossRefGoogle Scholar
  32. R. Klingeler, R.B. Sim, Carbon Nanotubes for Biomedical Applications (Springer, Berlin, 2011)CrossRefGoogle Scholar
  33. C. Klumpp, K. Kostarelos M. Prato, A. Bianco, Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758, 404–412 (2006)CrossRefGoogle Scholar
  34. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162 (1985)CrossRefGoogle Scholar
  35. C.L. Lay, J. Liu, Y. Liu, Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev. Med. Devices 8, 561–566 (2011)CrossRefGoogle Scholar
  36. Z. Liu, M. Winters, M. Holodniy, H. Dai, siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed. 46, 2023–2027 (2007)CrossRefGoogle Scholar
  37. F. Lu, L. Gu, M.J. Meziani, X. Wang, P.G. Luo, L.M. Veca, L. Cao, Y.P. Sun, Advances in bioapplications of carbon nanotubes. Adv. Mater. 21, 139–152 (2009)CrossRefGoogle Scholar
  38. X. Luo, C. Matranga, S. Tan, N. Alba, X.T. Cui, Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32, 6316–6323 (2011)CrossRefGoogle Scholar
  39. J. Malakar, S.O. Sen, A.K. Nayak, K.K. Sen, Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharma. J. 20, 355–363 (2012)CrossRefGoogle Scholar
  40. S. Mazumder, A.K. Nayak, T.J. Ara, M.S. Hasnain, Hydroxyapatite composites for dentistry, in Applications of Nanocomposite Materials in Dentistry (Elsevier, 2019), pp. 123–143Google Scholar
  41. S.S Nanda, D.K. Yi, M.S. Hasnain, A.K. Nayak, Hydroxyapatite-alginate composites in drug delivery. in Alginate: Versatile Polymer in Biomedical Applications and Therapeutics, (Apple Academic Press, 2019), pp. 483–503Google Scholar
  42. A.K. Nayak, Controlled release drug delivery systems. Sci. J. UBU 2, 1–8 (2011)Google Scholar
  43. A.K. Nayak, H. Bera, In situ polysaccharide-based gels for topical drug delivery applications, in Polysaccharide Carriers for Drug Delivery (Elsevier, 2019), pp. 615–638Google Scholar
  44. A.K. Nayak, B. Das, Introduction to polymeric gels, in Polymeric Gels (Elsevier, 2018), pp. 3–27Google Scholar
  45. A.K. Nayak, A.K. Dhara, Nanotechnology in drug delivery applications: a review. Arch. Appl. Sci. Res. 2, 284–293 (2010)Google Scholar
  46. A.K. Nayak, S.A. Ahmad, S. Beg, T.J. Ara, M.S. Hasnain, Drug delivery: Present, past and future of medicine, in Applications of Nanocomposite Materials in Drug Delivery, (Elsevier, 2018), pp. 255–282Google Scholar
  47. A.K. Nayak, S. Mazumder, T.J. Ara, M.T. Ansari, M.S. Hasnain, Calcium fluoride-based dental nanocomposites, in Applications of Nanocomposite Materials in Dentistry, (Elsevier, 2019), pp. 27–45Google Scholar
  48. M. Ouyang, J.-L. Huang, C.M. Lieber, One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Phys. Rev. Lett. 88, 066804 (2002)CrossRefGoogle Scholar
  49. D. Pal, A.K. Nayak, Nanotechnology for targeted delivery in cancer therapeutics. Int. J. Pharm. Sci. Rev. Res. 1, 1–7 (2010)Google Scholar
  50. H. Pan, Y. Feng, J. Lin, Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys. Rev. B 72, 085415 (2005)CrossRefGoogle Scholar
  51. D. Pantarotto, J.-P. Briand, M. Prato, A. Bianco, Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 1, 16–17 (2004a)CrossRefGoogle Scholar
  52. D. Pantarotto, R. Singh, D. McCarthy, M. Erhardt, J.P. Briand, M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 43, 5242–5246 (2004b)CrossRefGoogle Scholar
  53. M. Paradise, T. Goswami, Carbon nanotubes–production and industrial applications. Mater. Des. 28, 1477–1489 (2007)CrossRefGoogle Scholar
  54. V. Raffa, G. Ciofani, S. Nitodas, T. Karachalios, D. D’Alessandro, M. Masini, A. Cuschieri, Can the properties of carbon nanotubes influence their internalization by living cells? Carbon 46, 1600–1610 (2008)CrossRefGoogle Scholar
  55. S. Ray, P. Sinha, B. Laha, S. Maiti, U.K. Bhattacharyya, A,K, Nayak, Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J. Drug Deliv. Sci. Technol. 48, 21–29 (2018)CrossRefGoogle Scholar
  56. P. Rani, D. Pal, M.N. Hoda, T.J. Ara, S. Beg, M.S. Hasnain, A.K. Nayak, Dental pulp capping nanocomposites, in Applications of Nanocomposite Materials in Dentistry (Elsevier, 2019), pp. 65–91Google Scholar
  57. P. Ray, M.S. Hasnain, A. Koley, A.K. Nayak, Bone-implantable devices for drug delivery applications, in Bioelectronics and Medical Devices (Elsevier, 2019), pp. 355–392Google Scholar
  58. M. Sheikhpour, A. Golbabaie, A. Kasaeian, Carbon nanotubes: a review of novel strategies for cancer diagnosis and treatment. Mater. Sci. Eng. C 76, 1289–1304 (2017)CrossRefGoogle Scholar
  59. N.W. Shi Kam, T.C. Jessop, P.A. Wender, H. Dai, Nanotube molecular transporters: internalization of carbon nanotube—protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)CrossRefGoogle Scholar
  60. N. Sinha, J.-W. Yeow, Carbon nanotubes for biomedical applications. IEEE Trans. Nanobiosci. 4, 180–195 (2005)CrossRefGoogle Scholar
  61. E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61, 1899–1912 (2001)CrossRefGoogle Scholar
  62. H. Troiani, M. Miki-Yoshida, G. Camacho-Bragado, M. Marques, A. Rubio, J. Ascencio, M. Jose-Yacaman, Direct observation of the mechanical properties of single-walled carbon nanotubes and their junctions at the atomic level. Nano Lett. 3, 751–755 (2003)CrossRefGoogle Scholar
  63. S. Vardharajula, S.Z. Ali, P.M. Tiwari, E. Eroğlu, K. Vig, V.A. Dennis, S.R. Singh, Functionalized carbon nanotubes: biomedical applications. Int. J. Nanomed. 7, 5361 (2012)Google Scholar
  64. S.K. Vashist, D. Zheng, G. Pastorin, K. Al-Rubeaan, J.H. Luong, F.-S. Sheu, Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49, 4077–4097 (2011)CrossRefGoogle Scholar
  65. T. Waghule, V.K. Rapalli, G. Singhvi, P. Manchanda, N. Hans, S.K. Dubey, M.S. Hasnain, A.K. Nayak, Voriconazole loaded nanostructured lipid carriers based topical delivery system: QbD based designing, characterization, in-vitro and ex-vivo evaluation. J. Drug Deliv. Sci. Technol. 52, 303–315 (2019)CrossRefGoogle Scholar
  66. X. Wan, J. Dong, D. Xing, Optical properties of carbon nanotubes. Phys. Rev. B 58, 6756 (1998)CrossRefGoogle Scholar
  67. B.S. Wong, S.L. Yoong, A. Jagusiak, T. Panczyk, H.K. Ho, W.H. Ang, G. Pastorin, Carbon nanotubes for delivery of small molecule drugs. Adv. Drug Deliv. Rev. 65, 1964–2015 (2013)CrossRefGoogle Scholar
  68. K. Zare, F. Najafi, H. Sadegh, Studies of ab initio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J. Nanostruct. Chem. 3, 71 (2013)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PharmacyShri Venkateshwara UniversityAmrohaIndia
  2. 2.Department of PharmaceuticsSeemanta Institute of Pharmaceutical ScienceMayurbhanjIndia

Personalised recommendations