A Comparative Deterministic and Probabilistic Stability Analysis of Rock-Fill Tailing Dam

  • Tanmoy DasEmail author
  • A. Hegde
Conference paper
Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 55)


This paper presents a comparative study between simple deterministic stability analysis and probabilistic analysis, considering the case of an existing rock-fill tailing dam of 51 m height located in Rajasthan, India. A detailed seismic stability analysis was carried out considering the pseudostatic approach. All the analyses were carried out in CAD-based 2-D limit equilibrium program SLIDE 2D. In order to integrate the soil heterogeneity, stochastic Monte Carlo Simulation (MCS) technique was used. A minimal random number generator developed by Park and Miller (Association for Computing Machinery 31(10):1193–1201, 1988) was used in the analysis. The factor of safety values were calculated using Spencer’s method by considering circular failure surfaces. The cohesive strength (c), the angle of friction (φ) and the acceleration (αh) due to earthquakes were considered as the random variable in the study. For the critical geometry of the slope, the observed factor of safety values in case of upstream slope (1.67) and downstream slope (1.15) were found to be higher than the values specified in the IS 7894 (Code of practice for the stability analysis of the earth dams. Indian Standard, New Delhi, 1975) (reaffirmed in 1997) and ANCOLD (Guidelines on tailings dam design, construction and operation. Australian National Committee on Large Dam, 1999). The seismic deformation analysis was also carried for the downstream slope using the Newmark displacement method. Permanent displacement of the slope was found within the tolerable limits. Further, the results revealed that the spatial variability of the soil significantly influences the factor of safety values. Hence, the present study recommends the probabilistic stability analysis over the deterministic stability analysis for the rock-fill tailing dams.


Tailing dam Monte Carlo simulation Random number generator Newmark displacement method Inherent spatial variability 


  1. 1.
    ANCOLD (1999) Guidelines on tailings dam design, construction and operation. Australian National Committee on Large DamGoogle Scholar
  2. 2.
    Ang Alfredo HS, Tang WH (2007) Probability concepts in engineering. Wiley, New JerseyGoogle Scholar
  3. 3.
    Bray JD, Rathje EM, Augello AJ, Merry SM (1998) Simplified seismic design procedure for geosynthetic-lined solid waste landfills. Geosynthetics Int 5(1–2):203–235CrossRefGoogle Scholar
  4. 4.
    Day RW (2002) Geotechnical earthquake engineering handbook. McGraw-Hill, New YorkGoogle Scholar
  5. 5.
    Duncan JM, Wright SG, Brandon TL (2005) Soil strength and slope stability. Wiley, New JerseyGoogle Scholar
  6. 6.
    Hammersley JM, Handscomb DC (1964) Monte Carlo methods. Wiley, New YorkCrossRefGoogle Scholar
  7. 7.
    Hassan AM, Wolff TF (1999) Search algorithm for minimum reliability index of earth slopes. J Geotech Eng Div 125:301–308CrossRefGoogle Scholar
  8. 8.
    Husein Malkawi AI, Hassan W, Abdulla F (2000) Uncertainty and reliability analysis applied to slope stability. Struct Saf 22:161–187CrossRefGoogle Scholar
  9. 9.
    Hynes-Griffrin ME, Franklin AG (1984) Rationalizing the seismic coefficient method. Final Report, Miscellaneous Paper GL-84-13. Waterways Experiment Station, U.S. Army Corps of Engineers, VicksburgGoogle Scholar
  10. 10.
    Indian Bureau of mines technical bulletin no. 30. Tailing dam design. Nagpur (1995)Google Scholar
  11. 11.
    IS: 1893(I) (2002) Criteria for earthquake resistant design of the structures. Indian Standard, New DelhiGoogle Scholar
  12. 12.
    IS: 7894 (1975) Code of practice for the stability analysis of the earth dams. Indian Standard, New DelhiGoogle Scholar
  13. 13.
    Jiang SH, Li DQ, Cao ZJ, Zhou CB, Phoon KK (2015) Efficient system reliability analysis of slope stability in spatially variable soils using monte carlo simulation. J Geotech Geoenviron Eng 141(2):1–13CrossRefGoogle Scholar
  14. 14.
    Kavazanjian EJ, Matasovic N, Hadj-Hamou T, Sabatini PJ (1997) Geotechnical engineering circular#3, Design guidance: geotechnical earthquake engineering for highways, vol 1, design principles. Federal Highway Administration, U.S. Dept. of Transportation, WashingtonGoogle Scholar
  15. 15.
    Li L, Wang Y, Cao Z, Chu X (2013) Risk de-aggregation and system reliability analysis of slope stability using representative slip surfaces. Comput Geotech 53:95–105CrossRefGoogle Scholar
  16. 16.
    Newmark NM (1965) Effects of earthquakes on dams and embankments. Geotechnique 15:139–160CrossRefGoogle Scholar
  17. 17.
    Park SK, Miller KW (1988) Random numbers generators: good ones are hard to find. Assoc Comput Mach 31(10):1193–1201MathSciNetGoogle Scholar
  18. 18.
    Rico M, Benito G, Salgueiro AR, Díez-Herrero A, Pereira HG (2008) Reported tailings dam failures. J Hazard Mater 152:846–852CrossRefGoogle Scholar
  19. 19.
    Rocscience Inc (2018) slide version 7.0. Tutorials do slide 7.0.
  20. 20.
    Seed HB (1979) Considerations in the earthquake-resistant design of earth and rockfill dams. Geotechnique 29(3):215–263CrossRefGoogle Scholar
  21. 21.
    Sitharam TG, Hegde A (2017a) Stability analysis of rock-fill tailing dam: an Indian case study. Int J Geotech Eng 11(4):332–342CrossRefGoogle Scholar
  22. 22.
    Sitharam TG, Hegde A (2017b) Probabilistic seismic slope stability analyses of rock fill tailing dams: a case study. In: Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, Technical Committee 210. Seoul, pp 2439–2442Google Scholar
  23. 23.
    Sjoberg J (1999) Analysis of large scale rock slopes. Doctoral Thesis, Lulea University of Technology. Division of Rock Mechanics, SwedenGoogle Scholar
  24. 24.
    Spencer EE (1967) A method of the analysis of the stability of embankments assuming parallel inter-slice forces. Geotechnique 17:11–26CrossRefGoogle Scholar
  25. 25.
    Tian WQ, Xue JG (2006) Tailings pond safety technology and management. Coal Industry Press, BeijingGoogle Scholar
  26. 26.
    Tobutt DC, Richards EA (1979) The reliability of earth slopes. Int J Numer Anal Meth Geomech 3:323–354CrossRefGoogle Scholar
  27. 27.
    Wang Y (2013) MCS-based probabilistic design of embedded sheet pile walls. Georisk 7(3):151–162Google Scholar
  28. 28.
    Wang Y, Cao ZJ, Au SK (2011) Practical reliability analysis of slope stability by advanced monte carlo simulations in a spreadsheet. Can Geotech J 48(1):162–172CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Civil & Environmental EngineeringIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations