Advertisement

Cellular Automata Based Key Stream Generator – A Reconfigurable Hardware Approach

  • Sundararaman Rajagopalan
  • Nikhil Krishnaa Sriram
  • V. Manikandan
  • Sivaraman Rethinam
  • Sridevi Arumugham
  • Siva Janakiraman
  • Amirtharajan RengarajanEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1116)

Abstract

Rapid developments in network-based application demand a special attention to protect the confidentiality of data. Cryptographic algorithms play a lead role in ensuring confidentiality assisted by key generation architecture. Keys have a fair role in modern cryptography, which can be generated through random number generators. To meet the real-time requirements, cryptographic primitives can be developed on reconfigurable hardware such as Field Programmable Gate Arrays (FPGAs). This work focuses on the development of Pseudo Random Number Generation (PRNG) architecture using Cellular Automata (CA) on Altera Cyclone II EP2C20F484C7 FPGA at an operating frequency of 50 MHz. Significantly, CA based random sequences were generated based on five rules namely R30, R90, R105, R150 and R165. The randomness of the proposed Pseudo Random Number Generator (PRNG) has been confirmed using entropy and NIST 800 – 22 tests. The proposed design has consumed only 461 logic elements which are 3% of total logic elements of target FPGA and also achieves a throughput of 51.603 Mbps for 128-bit PRNG with a power dissipation of 72.26 mW.

Keywords

Confidentiality PRNG Cryptography FPGA and NIST 800 – 22 

Notes

Acknowledgement

The authors wish to thank SASTRA Deemed University for providing infrastructure through the Research & Modernization Fund (Ref. No: R&M/0026/SEEE-010/2012-13) to carry out the research work.

References

  1. 1.
    Bakiri, M., Guyeux, C., Couchot, J.-F., Oudjida, A.K.: Survey on hardware implementation of random number generators on FPGA: theory and experimental analyses. Comput. Sci. Rev. 27, 135–153 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Sivaraman, R., Rajagopalan, S., Sridevi, A., Rayappan, J.B.B., Annamalai, M.P.V., Rengarajan, A.: Metastability-induced TRNG architecture on FPGA. Iran. J. Sci. Technol. Trans. Electr. Eng (2019).  https://doi.org/10.1007/s40998-019-00234-2CrossRefGoogle Scholar
  3. 3.
    Thesen, A.: Chapter IX - random number generators. In: Thesen, A. (ed.) Computer Methods in Operations Research, pp. 194–213. Academic Press (1978)Google Scholar
  4. 4.
    Sehwag, V., Member, S., Prasad, N., Member, S., Sngs, A.E.: A parallel stochastic number generator with bit permutation networks. IEEE Trans. Circuits Syst. II 65(2), 231–235 (2018)CrossRefGoogle Scholar
  5. 5.
    Deckhakka, M.P., Babitha, P.K., Thushara, T.: FPGA based N-Bit LFSR to generate random sequence number. Int. J. Eng. Gen. Sci. 3(3), 6–10 (2015)Google Scholar
  6. 6.
    Lee, J.-H., Jeon, M.-J., Kim, S.C.: Uniform random number generator using leap-ahead LFSR architecture. In: Kim, T.-h., Ramos, C., Kim, H.-k., Kiumi, A., Mohammed, S., Ślęzak, D. (eds.) ASEA 2012. CCIS, vol. 340, pp. 264–271. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35267-6_34CrossRefGoogle Scholar
  7. 7.
    Zhang, H., Wang, Y., Wang, B., Wu, X.: Evolutionary random sequence generators based on LFSR. Wuhan Univ. J. Nat. Sci. 12(1), 75–78 (2007)CrossRefGoogle Scholar
  8. 8.
    Fang, X., Wang, Q., Guyeux, C., Bahi, J.M.: FPGA acceleration of a pseudorandom number generator based on chaotic iterations. J. Inf. Secur. Appl. 19(1), 78–87 (2014)Google Scholar
  9. 9.
    François, M., Grosges, T., Barchiesi, D., Erra, R.: Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 19(4), 887–895 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dabal, P., Pawel, R.: FPGA implementation of chaotic pseudo-random bit generators. In: MIXDES 2012 (2012)Google Scholar
  11. 11.
    Pande, A., Zambreno, J.: A chaotic encryption scheme for real-time embedded systems: design and implementation. Telecommun. Syst. 52(2), 551–561 (2013)Google Scholar
  12. 12.
    Azzaz, M.S., et al.: Real-time FPGA implementation of Lorenz’s chaotic generator for ciphering telecommunications. In: Joint IEEE North-East Workshop on Circuits Systems and TAISA Conference, pp. 1–4 (2009)Google Scholar
  13. 13.
    de la Fraga, L.G., Torres-Pérez, E., Tlelo-Cuautle, E., Mancillas-López, C.: Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 90(3), 1661–1670 (2017)CrossRefGoogle Scholar
  14. 14.
    Garcia-Bosque, M., Pérez-Resa, A., Sánchez-Azqueta, C.: Chaos-based bitwise dynamical pseudorandom number generator on FPGA. IEEE Trans. Instrum. Meas. 1–4 (2018)Google Scholar
  15. 15.
    Hua, Z., Zhou, B., Zhou, Y., Member, S.: Sine chaotification model for enhancing chaos and its hardware implementation. IEEE Trans. Ind. Electron. 66(2), 1273–1284 (2019)CrossRefGoogle Scholar
  16. 16.
    Bakiri, M., Guyeux, C., Galatolo, S., Marangio, L.: A hardware and secure pseudorandom generator for constrained devices. IEEE Trans. Ind. Informatics 14(8), 3754–3765 (2018)CrossRefGoogle Scholar
  17. 17.
    Beatriz, A., López, O., Encinas, L.H., Muñoz, A.M., Vitini, F.M.: A lightweight pseudorandom number generator for securing the Internet of Things. IEEE Access 5 (2017)Google Scholar
  18. 18.
    Anghelescu, P., Sofron, E., Ionita, S., Ionescu, L.: FPGA implementations of cellular automata for pseudo random number generation. In: IEEE Conference, no. 1, pp. 371–374 (2006)Google Scholar
  19. 19.
    Hortensius, P.D., Mcleod, R.D., Card, H.C.: Parallel random number generation for VLSI systems using cellular automata. IEEE Trans. Comput. 38(40), 185–191 (1989). Commun. ACM Commun. ACM AFIPSGoogle Scholar
  20. 20.
    Hortensius, P.D., Mcleod, R.D., Pries, W., Miller, D.M., Card, H.C.: Cellular Automata-Based Pseudorandom Number Generators for Built-in Self-Test. IEEE Trans. Comput. Aided Des. 8(8), 842–859 (1989)CrossRefGoogle Scholar
  21. 21.
    Petrica, L.: FPGA optimized cellular automaton random number generator. J. Parallel Distrib. Comput. 111, 251–259 (2018)CrossRefGoogle Scholar
  22. 22.
    Tomassini, M., Perrenoud, M.: Cryptography with cellular automata. Appl. Soft Comput. 1(2), 151–160 (2001)CrossRefGoogle Scholar
  23. 23.
    Abdo, A.A., Lian, S., Ismail, I.A., Amin, M., Diab, H.: A cryptosystem based on elementary cellular automata. Commun. Nonlinear Sci. Numer. Simul. 18(1), 136–147 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sundararaman, R., Upadhyay, H.N., Rayappan, J.B.B., Amirtharajan, R.: Logic elements consumption analysis of cellular automata based image encryption in FPGA. Res. J. Inf. Technol. 6(4), 291–307 (2014)Google Scholar
  25. 25.
    Rajagopalan, S., Upadhyay, H.N., Rayappan, J.B.B., Amirtharajan, R.: Dual cellular automata on FPGA: an image encryptors chip. Res. J. Inf. Technol. 6(3), 223–236 (2014)Google Scholar
  26. 26.
    Wolfram, S.: Random sequence generation by cellular automata. Adv. Appl. Math. 7, 127–169 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bassham, L.E., et al.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. National Institute of Standards & Technology, Gaithersburg, MD, USA, Technical report, no., April 2010Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sundararaman Rajagopalan
    • 1
  • Nikhil Krishnaa Sriram
    • 1
  • V. Manikandan
    • 1
  • Sivaraman Rethinam
    • 1
  • Sridevi Arumugham
    • 1
  • Siva Janakiraman
    • 1
  • Amirtharajan Rengarajan
    • 1
    Email author
  1. 1.Department of ECE, School of EEESASTRA Deemed UniversityThanjavurIndia

Personalised recommendations