Advertisement

Consecutive k and Related Models—A Survey

  • Lirong CuiEmail author
  • Qinglai Dong
Chapter
Part of the Communications in Computer and Information Science book series (CCIS, volume 1102)

Abstract

As one of the most popular reliability models, the previous several decades have witnessed remarkable developments and extensive applications of consecutive k systems, and a number of related models have been developed. In the paper, a summary of the state of the arts in the field is provided. After a brief introduction of conventional consecutive k systems, we focus on variants of the consecutive k systems by considering failure criteria (single failure criterion and multiple failure criteria), geometric structure of the system, states of components and the system, weight of each component, dependency of components. Finally, several future challenges deserving further studies are highlighted.

Keywords

Consecutive k-out-of-n systems System reliability Component importance System signature 

Notes

Acknowledgments

The work was supported by the National Natural Science Foundation of China under Grant (71631001) and Scientific Research Program Funded by Shaanxi Provincial Education Department (18JK0877).

References

  1. Agarwal, M., Mohan, P.: GERT analysis of m-consecutive-k-out-of-n: F system with overlapping runs and (k-1)-step Markov dependence. Int. J. Oper. Res. 3(1–2), 36–51 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. Agarwal, M., Mohan, P., Sen, K.: GERT analysis of m-consecutive-k-out-of-n: F systems with dependence. Econ. Qual. Control 22(1), 141–157 (2007a)MathSciNetzbMATHCrossRefGoogle Scholar
  3. Agarwal, M., Sen, K., Mohan, P.: GERT analysis of m-consecutive-k-out-of-n systems. IEEE Trans. Reliab. 56(1), 26–34 (2007b)MathSciNetzbMATHCrossRefGoogle Scholar
  4. Aki, S.: Distributions of runs and consecutive systems on directed trees. Ann. Inst. Stat. Math. 51(1), 1–15 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. Akiba, T., Yamamoto, H., Tsujimura, Y.: Evaluating methods for the reliability of a three-dimensional k-within system. J. Qual. Maintenance Eng. 11(3), 254–266 (2005)CrossRefGoogle Scholar
  6. Amrutkar, K.P., Kamalja, K.K.: Efficient algorithm for reliability and importance measures of linear weighted-(n, f, k) and <n, f, k> systems. Comput. Ind. Eng. 107, 85–99 (2017)CrossRefGoogle Scholar
  7. Barlow, R.E., Proschan, F.: Mathematical Theory of Reliability. Wiley, New York (1965)zbMATHGoogle Scholar
  8. Belaloui, S., Ksir, B.: Reliability of a multi-state consecutive k-out-of-n: G system. Int. J. Reliab. Qual. Saf. Eng. 14(4), 361–377 (2007)CrossRefGoogle Scholar
  9. Boehme, T.K., Kossow, A., Preuss, W.: A generalization of consecutive-k-out-of-n: F systems. IEEE Trans. Reliab. 41(3), 451–457 (1992)zbMATHCrossRefGoogle Scholar
  10. Boland, P.J., Samaniego, F.J.: Stochastic ordering results for consecutive k-out-of-n: F systems. IEEE Trans. Reliab. 53(1), 7–10 (2004)CrossRefGoogle Scholar
  11. Bollinger, R.: Direct computations for consecutive-k-out-of-n: F systems. IEEE Trans. Reliab. 31, 444–446 (1982)zbMATHCrossRefGoogle Scholar
  12. Boushaba, M., Azouz, Z.: Reliability bounds of a 3-dimensional consecutive-k-out-of-n: F system. Int. J. Reliab. Qual. Saf. Eng. 18(1), 51–59 (2011)CrossRefGoogle Scholar
  13. Boushaba, M., Benyahia, A.: Reliability and importance measures for combined m-consecutive-k-out-of-n: F and consecutive-kb-out-of-n: F systems with non-homogeneous Markov-dependent components. Int. J. Reliab. Qual. Saf. Eng. 25(5), 1850022 (2018)CrossRefGoogle Scholar
  14. Cai, J.: Reliability of a large consecutive-k-out-of-r-from-n: F system with unequal component-reliability. IEEE Trans. Reliab. 43(1), 107–111 (1994)CrossRefGoogle Scholar
  15. Chadjiconstantinidis, S., Koutras, M.V.: Measures of component importance for Markov chain imbeddable reliability structures. Naval Res. Logistics 46(6), 613–639 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  16. Chang, J.C., Chen, R.J., Hwang, F.K.: A fast reliability-algorithm for the circular consecutive-weighted-k-out-of-n: F system. IEEE Trans. Reliab. 47(4), 472–474 (1998)CrossRefGoogle Scholar
  17. Chang, H.W., Chen, R.J., Hwang, F.K.: The structural Birnbaum importance of consecutive-k systems. J. Comb. Optim. 6(2), 183–197 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. Chang, G.J., Cui, L.R., Hwang, F.K.: Reliabilities for (n, f, k) systems. Stat. Probab. Lett. 43(3), 237–242 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Chang, G.J., Cui, L.R., Hwang, F.K.: Reliabilities of Consecutive-k-Systems. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  20. Chang, Y.M., Huang, T.H.: Reliability of a 2-dimensional k-within consecutive-r × s-out-of-m × n: F system using finite Markov chains. IEEE Trans. Reliab. 59(4), 725–733 (2010)CrossRefGoogle Scholar
  21. Chao, M.T., Fu, J.C., Koutras, M.V.: Survey of reliability studies of consecutive-k-out-of-n: F and related systems. IEEE Trans. Reliab. 44(1), 120–127 (1995)CrossRefGoogle Scholar
  22. Chen, Y., Yang, Q.: Reliability of two-stage weighted-k-out-of-n systems with components in common. IEEE Trans. Reliab. 54(3), 431–440 (2005)CrossRefGoogle Scholar
  23. Chiang, D.T., Niu, S.C.: Reliability of consecutive-k-out-of-n: F System. IEEE Trans. Reliab. 30(1), 87–89 (1981)zbMATHCrossRefGoogle Scholar
  24. Cowell, S.: A formula for the reliability of a d-dimensional consecutive-k-out-of-n: F system. Mathematics 2015, 1–5 (2015). 140909MathSciNetzbMATHGoogle Scholar
  25. Cui, L.R., Hawkes, A.G.: A note on the proof for the optimal consecutive k-out-of-n: G line for n ≤ 2k. J. Stat. Plann. Infer. 138, 1516–1520 (2008)zbMATHCrossRefGoogle Scholar
  26. Cui, L.R., Kuo, W., Li, J.L., Xie, M.: On the dual reliability systems of (n, f, k) and <n, f, k>. Stat. Probab. Lett. 76(11), 1081–1088 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  27. Cui, L.R., Lin, C., Du, S.J.: m-consecutive-k, l-out-of-n systems. IEEE Trans. Reliab. 64(1), 386–393 (2015)CrossRefGoogle Scholar
  28. Cui, L.R., Xu, Y., Zhao, X.: Developments and applications of the finite Markov chain imbedding approach in reliability. IEEE Trans. Reliab. 59(4), 685–690 (2010)CrossRefGoogle Scholar
  29. Daus, L., Beiu, V.: Review of reliability bounds for consecutive-k-out-of-n systems. In: IEEE 14th International Conference on Nanotechnology (IEEE-NANO), pp. 302–307. IEEE (2014)Google Scholar
  30. Derman, C., Lieberman, G.J., Ross, S.M.: On the consecutive-k-out-of-n: F system. IEEE Trans. Reliab. 31, 57–63 (1982)zbMATHCrossRefGoogle Scholar
  31. Ding, Y., Zuo, M.J., Lisnianski, A., Li, W.: A framework for reliability approximation of multi-state weighted k-out-of-n systems. IEEE Trans. Reliab. 59(2), 297–308 (2010)CrossRefGoogle Scholar
  32. Eryilmaz, S.: On the lifetime distribution of consecutive k-out-of-n: F system. IEEE Trans. Reliab. 56(1), 35–39 (2007)CrossRefGoogle Scholar
  33. Erylmaz, S.: Reliability properties of consecutive k-out-of-n systems of arbitrarily dependent components. Reliab. Eng. Syst. Saf. 94(2), 350–356 (2009)CrossRefGoogle Scholar
  34. Eryilmaz, S.: Review of recent advances in reliability of consecutive k-out-of-n and related systems. Proc. IMechE Part O: J. Risk Reliab. 224, 225–237 (2010)CrossRefGoogle Scholar
  35. Eryilmaz, S.: Circular consecutive k-out-of-n systems with exchangeable dependent components. J. Stat. Plann. Infer. 141(2), 725–733 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  36. Eryilmaz, S.: m-consecutive-k-out-of-n: F system with overlapping runs: signature-based reliability analysis. Int. J. Oper. Res. 15(1), 64–73 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  37. Eryilmaz, S.: Component importance for linear consecutive-k-out-of-n and m-consecutive-k-out-of-n systems with exchangeable components. Naval Res. Logistics 60(4), 313–320 (2013a)MathSciNetzbMATHCrossRefGoogle Scholar
  38. Eryilmaz, S.: On reliability analysis of a k-out-of-n system with components having random weights. Reliab. Eng. Syst. Saf. 109(1), 41–44 (2013b)CrossRefGoogle Scholar
  39. Eryilmaz, S., Aksoy, T.: Reliability of linear (n, f, k) systems with weighted components. J. Syst. Sci. Syst. Eng. 19(3), 277–284 (2010)CrossRefGoogle Scholar
  40. Eryilmaz, S., Bayramoglu, K.: Residual lifetime of consecutive k-out-of-n systems under double monitoring. IEEE Trans. Reliab. 61(3), 792–797 (2012)CrossRefGoogle Scholar
  41. Eryilmaz, S., Koutras, M.V., Triantafyllou, I.S.: Signature based analysis of m-Consecutive-k-out-of-n: F systems with exchangeable components. Naval Res. Logistics 58(4), 344–354 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  42. Eryilmaz, S., Mahmoud, B.: Linear m-Consecutive-k, l-out-of-n: F system. IEEE Trans. Reliab. 61(3), 787–791 (2012)CrossRefGoogle Scholar
  43. Eryilmaz, S., Sarikaya, K.: Modeling and analysis of weighted-k-out-of-n: G system consisting of two different types of components. Proc. IMechE Part O: J. Risk Reliab. 228(3), 265–271 (2014)Google Scholar
  44. Eryilmaz, S., Tutuncu, G.Y.: Reliability evaluation of linear consecutive-weighted-k-out-of-n: F system. Asia-Pac. J. Oper. Res. 26(6), 805–816 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  45. Faghih-Roohi, S., Xie, M., Ng, K.M., et al.: Dynamic availability assessment and optimal component design of multi-state weighted k-out-of-n systems. Reliab. Eng. Syst. Saf. 123(4), 57–62 (2014)CrossRefGoogle Scholar
  46. Fu, J.C., Hu, B.: On reliability of a large consecutive-k-out-of-n: F system with (k-1)-step Markov dependence. IEEE Trans. Reliab. 36(1), 75–77 (1987)zbMATHCrossRefGoogle Scholar
  47. Fu, J.C., Koutras, M.V.: Distribution theory of runs: a Markov chain approach. Publ. Am. Stat. Assoc. 89, 1050–1058 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  48. Ge, G.P.: On consecutive k-out-of-n: F systems. Adv. Math. 22(4), 306–311 (1993). (in Chinese)MathSciNetzbMATHGoogle Scholar
  49. Gera, A.E.: A consecutive k-out-of-n: G system with dependent elements—a matrix formulation and solution. Reliab. Eng. Syst. Saf. 68(1), 61–67 (2000)CrossRefGoogle Scholar
  50. Gera, A.E.: Combined m1-consecutive-k-out-of-n and m2-consecutive-k-out-of-n systems. IEEE Trans. Reliab. 60, 493–497 (2011)CrossRefGoogle Scholar
  51. Godbole, A.P., Potter, L.K., Sklar, J.K.: Improved upper bounds for the reliability of d dimensional consecutive k-out-f-n: F systems. Naval Res. Logistics 45(2), 219–230 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  52. Griffith, W.S.: On consecutive k-out-of-n failure systems and their generalizations. In: Basu, A.P. (ed.) Reliability and Quality Control, pp.157–165. Elsevier, North Holland (1986)Google Scholar
  53. Guo, Y.L., Cui, L.R., Li, J.L., Gao, S.: Reliabilities for (n, f, k (i, j)) and < n, f, k (i, j) > systems. Commun. Stat. Theory Methods 35(10), 1779–1789 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  54. Habib, A., Al-Seedy, R.O., Radwan, T.: Reliability evaluation of multi-state consecutive k-out-of-r-from-n: G system. Appl. Math. Model. 31(11), 2412–2423 (2007)zbMATHCrossRefGoogle Scholar
  55. Habib, A.S., Yuge, T., Al-Seedy, R.O., Ammar, S.I.: Reliability of a consecutive (r, s)-out-of-(m, n): F lattice system with conditions on the number of failed components in the system. Appl. Math. Model. 34(3), 531–538 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  56. Hsieh, Y.C., Chen, T.C.: Reliability lower bounds for two-dimensional consecutive-k-out-of-n: F systems. Comput. Oper. Res. 31(8), 1259–1272 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  57. Huang, J.S., Zuo, M.J., Fang, Z.D.: Multi-state consecutive-k-out-of-n systems. IIE Trans. 35(6), 527–534 (2003)CrossRefGoogle Scholar
  58. Hwang, F., Yao, Y.: Multistate consecutively-connected systems. IEEE Trans. Reliab. 38, 472–474 (1989)zbMATHCrossRefGoogle Scholar
  59. Kamalja, K.K.: Birnbaum importance for consecutive-k systems. Int. J. Reliab. Qual. Saf. Eng. 19(4), 1250016 (2012)CrossRefGoogle Scholar
  60. Kamalja, K.K.: Birnbaum reliability importance for (n, f, k) and <n, f, k> system. Commun. Stat. Theory Methods 43(10–12), 2406–2418 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  61. Kamalja, K.K., Amrutkar, K.P.: Computational methods for reliability and importance measures of weighted-consecutive-system. IEEE Trans. Reliab. 63(1), 94–104 (2014)CrossRefGoogle Scholar
  62. Kamalja, K.K., Amrutkar, K.P.: Reliability and reliability importance of weighted-r-within-consecutive-k-out-of-n: F system. IEEE Trans. Reliab. 67(3), 951–969 (2018)CrossRefGoogle Scholar
  63. Kontoleon, J.M.: Optimum allocation of components in a special 2-port network. IEEE Trans. Reliab. 27(2), 112–115 (1978)zbMATHCrossRefGoogle Scholar
  64. Kossow, A., Preuss, W.: Reliability of linear consecutively-connected systems with multistate components. IEEE Trans. Reliab. 44(3), 518–522 (1995)CrossRefGoogle Scholar
  65. Koutras, M.V.: Consecutive-k, r-out-of-n: DFM systems. Microelectron. Reliab. 37(4), 597–603 (1997)CrossRefGoogle Scholar
  66. Kulkarni, M.G., Kashikar, A.S.: Signature and reliability of conditional three-dimensional consecutive-(s, s, s)-out-of-(s, s, m): F system. Int. J. Reliab. Qual. Saf. Eng. 21(2), 1450009 (2014)CrossRefGoogle Scholar
  67. Kuo, W., Zuo, M.J.: Optimal Reliability Modelling-Principles and Applications. Wiley, New Jersey (2003)Google Scholar
  68. Kuo, W., Zhang, W., Zuo, M.J.: A consecutive-k-out-of-n: G system: the mirror image of a consecutive-k-out-of-n: F system. IEEE Trans. Reliab. 39(2), 244–253 (1990)zbMATHCrossRefGoogle Scholar
  69. Lam, Y., Ng, H.K.: A general model for consecutive-k-out-of-n: F repairable system with exponential distribution and (k-1)-step Markov dependence. Eur. J. Oper. Res. 129, 663–682 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  70. Lam, Y., Zhang, Y.L.: Repairable consecutive-k-out-f-n: F system with Markov dependence. Naval Res. Logistics 47(1), 18–39 (2015)MathSciNetCrossRefGoogle Scholar
  71. Lambiris, M., Papastavridis, S.: Exact reliability formulas for linear & circular consecutive-k-out-of-n: F systems. IEEE Trans. Reliab. 34(2), 124–126 (1985)zbMATHCrossRefGoogle Scholar
  72. Levitin, G.: Linear multi-state sliding-window systems. IEEE Trans. Reliab. 52(2), 263–269 (2003)CrossRefGoogle Scholar
  73. Levitin, G.: Consecutive k-out-of-r-from-n system with multiple failure criteria. IEEE Trans. Reliab. 53(3), 394–400 (2004)CrossRefGoogle Scholar
  74. Levitin, G.: The Universal Generating Function in Reliability Analysis and Optimization. Springer, London (2005)Google Scholar
  75. Levitin, G.: Linear m-gap-consecutive k-out-of-r-from-n: F systems. Reliab. Eng. Syst. Saf. 96(2), 292–298 (2011)CrossRefGoogle Scholar
  76. Levitin, G., Ben-Haim, H.: Consecutive sliding window systems. Reliab. Eng. Syst. Saf. 96(10), 1367–1374 (2011)CrossRefGoogle Scholar
  77. Levitin, G., Dai, Y.: Linear m-consecutive-k-out-of-r-from-n: F systems. IEEE Trans. Reliab. 60, 640–646 (2011)CrossRefGoogle Scholar
  78. Levitin, G., Xing, L., Ben-Haim, H., Dai, Y.: M/n CCS: Linear consecutively connected systems subject to combined gap constraints. Int. J. Gen Syst 44(7), 1–16 (2015)MathSciNetzbMATHGoogle Scholar
  79. Li, W., Zuo, M.J.: Optimal design of multi-state weighted k-out-of-n systems based on component design. Reliab. Eng. Syst. Saf. 93, 1673–1681 (2008)CrossRefGoogle Scholar
  80. Li, X.H., You, Y.P., Fang, R.: On weighted k-out-of-n systems with statistically dependent component lifetimes. Probab. Eng. Inf. Sci. 30(04), 533–546 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  81. Lin, C., Cui, L.R., Coit, D.W., Lv, M.: Reliability modeling on consecutive-kr-out-of-nr: F linear zigzag structure and circular polygon structure. IEEE Trans. Reliab. 65(3), 1–13 (2016)CrossRefGoogle Scholar
  82. Lu, S.Q., Shi, D.M., Xiao, H.: Reliability of sliding window systems with two failure modes. Reliab. Eng. Syst. Saf. 188, 366–376 (2019)CrossRefGoogle Scholar
  83. Mahmoud, B., Eryilmaz, S.: Joint reliability importance in a binary k-out-of-n: G system with exchangeable dependent components. Qual. Technol. Quant. Manag. 11(4), 453–460 (2014)CrossRefGoogle Scholar
  84. Malon, D.M.: Optimal consecutive-k-out-of-n: F component sequencing. IEEE Trans. Reliab. 34(1), 46–49 (1985)zbMATHCrossRefGoogle Scholar
  85. Meshkat, R.S., Mahmoudi, E.: Joint reliability and weighted importance measures of a k-out-of-n system with random weights for components. J. Comput. Appl. Math. 326, 273–283 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  86. Mohan, P., Agarwal, M., Sen, K.: Combined m-consecutive-k-out-of-n: F & consecutive kc-out-of-n: F system. IEEE Trans. Reliab. 58(2), 328–337 (2009)CrossRefGoogle Scholar
  87. Mohan, P., Agarwal, M., Sen, K.: Reliability analysis of sparsely connected consecutive-k systems: GERT approach. In: International Conference on Reliability, pp. 213–218 (2009b)Google Scholar
  88. Nashwan, I.I.H.: Reliability and failure functions of some weighted systems. Int. J. Appl. Math. Res. 6(1), 7–13 (2017)MathSciNetCrossRefGoogle Scholar
  89. Papastavridis, S.T., Koutras, V.: Consecutive-k-out-of-n systems with maintenance. Ann. Inst. Stat. Math. 44, 605–612 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  90. Papastavridis, S., Lambiris, M.: Reliability of a consecutive-k-out-of-n: F system for Markov-dependent components. IEEE Trans. Reliab. 36(1), 78–79 (1987)zbMATHCrossRefGoogle Scholar
  91. Papastavridis, S.T., Sfakianakis, M.: Optimal-arrangement & importance of the components in a consecutive-k-out-of-r-from-n: F system. IEEE Trans. Reliab. 40, 277–279 (1991)zbMATHCrossRefGoogle Scholar
  92. Preuss, W.W., Boehme, T.K.: On reliability analysis of consecutive-k-out-of-n: F systems and their generalizations - a survey. In: Anastassiou, G., Rachev, S.T. (eds.) Approximation, Probability, and Related Fields, pp. 401–411. Springer, Boston (1994).  https://doi.org/10.1007/978-1-4615-2494-6_31CrossRefzbMATHGoogle Scholar
  93. Psillakis, Z.M.: A simulation algorithm for computing failure probability of a consecutive-k-out-of-r-from-n: F system. IEEE Trans. Reliab. 44(3), 523–531 (1995)CrossRefGoogle Scholar
  94. Radwan, T., Habib, A., Alseedy, R., Elsherbeny, A.: Bounds for increasing multi-state consecutive k-out-of-r-from-n: F, system with equal components probabilities. Appl. Math. Model. 35(5), 2366–2373 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  95. Salehi, E.T.: On reliability analysis of consecutive k-out-of-n systems with arbitrarily dependent components. Appl. Math. 61(5), 565–584 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  96. Salehi, E.T., Asadi, M., Eryılmaz, S.: On the mean residual lifetime of consecutive k-out-of-n systems. Test 21, 93–115 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  97. Salvia, A.A., Lasher, W.C.: Two-dimensional consecutive-k-out-of-n: F models. IEEE Trans. Reliab. 39(3), 382–385 (1990)zbMATHCrossRefGoogle Scholar
  98. Sen, K., Agarwal, M., Mohan, P.: GERT analysis of consecutive-k systems: an overview. Oikos 94(1), 101–117 (2015)Google Scholar
  99. Sfakianakis, M., Kounias, S., Hillaris, A.: Reliability of consecutive k-out-of-r-from-n: F systems. IEEE Trans. Reliab. 41, 442–447 (1992)zbMATHCrossRefGoogle Scholar
  100. Sfakianakis, M.: Optimal arrangement of components in a consecutive k-out-of-r-from n: F system. Microelectron. Reliab. 33(10), 1573–1578 (1993)CrossRefGoogle Scholar
  101. Shanthikumar, J.G.: Lifetime distribution of consecutive-k-out-of-n: F systems with exchangeable lifetimes. IEEE Trans. Reliab. 34(5), 480–483 (1985)zbMATHCrossRefGoogle Scholar
  102. Shen, J.Y., Cui, L.R.: Reliability and Birnbaum importance for sparsely connected circular consecutive-k systems. IEEE Trans. Reliab. 64(4), 1140–1157 (2015)CrossRefGoogle Scholar
  103. Shen, J.Y., Cui, L.R., Du, S.J.: Birnbaum importance for linear consecutive-k-out-of-n systems with sparse d. IEEE Trans. Reliab. 64(1), 359–375 (2015)CrossRefGoogle Scholar
  104. Shingyochi, K., Yamamoto, H., Tsujimura, Y., Akiba, T.: Proposal of Simulated annealing algorithms for optimal arrangement in a circular consecutive-k-out-of-n: F system. Qual. Technol. Quant. Manag. 7(4), 395–405 (2010)CrossRefGoogle Scholar
  105. Shingyochi, K., Yamamoto, H., Tsujimura, Y.: Genetic algorithm for solving optimal component arrangement problem of circular consecutive-k-out-of-n: F system. Ieice Tech. Rep. 105(480), 13–18 (2015)Google Scholar
  106. Shingyochi, K., Yamamoto, H., Yamachi, H.: Comparative study of several simulated annealing algorithms for optimal arrangement problems in a circular consecutive-k-out-of-n: F system. Qual. Technol. Quant. Manag. 9(3), 295–303 (2016)CrossRefGoogle Scholar
  107. Tang, S.D., Hou, W.G.: A repairable linear m-consecutive-k-out-of-n: F system. Chin. Phys. Lett. 29(9), 098401 (2012)CrossRefGoogle Scholar
  108. Triantafyllou, I.S., Koutras, M.V.: Signature and IFR preservation of 2-within-consecutive k-out-of-n: F systems. IEEE Trans. Reliab. 60(1), 315–322 (2011)CrossRefGoogle Scholar
  109. Tung, S.S.: Combinatorial analysis in determining reliability. In: Annual Reliability and Maintainability Symposium, Los Angeles, CA, pp. 262–266 (1982)Google Scholar
  110. Wang, M. Q., Yang, J., Yu, H.: Reliability of phase mission linear consecutively-connected systems with constrained number of consecutive gaps. In: 2016 International Conference on System Reliability & Science, pp. 148–151. IEEE (2016)Google Scholar
  111. Wu, J.S., Chen, R.J.: An algorithm for computing the reliability of weighted-k-out-of-n systems. IEEE Trans. Reliab. 43(2), 327–328 (1994a)CrossRefGoogle Scholar
  112. Wu, J.S., Chen, R.J.: Efficient algorithms for k-out-of-n and consecutive-weighted-k-out-of-n: F system. IEEE Trans. Reliab. 43(4), 650–655 (1994b)CrossRefGoogle Scholar
  113. Xiao, G., Li, Z.: Estimation of dependability measures and parameter sensitivities of a consecutive-k-out-of-n: F repairable system with (k-1)-step Markov dependence by simulation. IEEE Trans. Reliab. 57(1), 71–83 (2008)CrossRefGoogle Scholar
  114. Xiao, H., Peng, R., Levitin, G.: Optimal replacement and allocation of multi-state elements in k-within-m-from-r/n sliding window systems. Appl. Stochast. Models Bus. Ind. 32(2), 184–198 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  115. Xiao, H., Peng, R., Wang, W. B., Zhao, F.: Linear m-gap-consecutive k-out-of-r-from-n system with common supply failures. In: 2014 International Conference on Reliability, Maintainability and Safety (ICRMS). IEEE (2014).  https://doi.org/10.1109/icrms.2014.7107201
  116. Yamamoto, H., Akiba, T.: Survey of reliability studies of multi-dimensional consecutive-k-out-of-n: F systems. Reliab. Eng. Assoc. Japan 25(8), 783–796 (2003)Google Scholar
  117. Yamamoto, H., Akiba, T.: Evaluating methods for the reliability of a large 2-dimensional rectangular k-within-consecutive-(r, s)-out-of-(m, n): F system. Naval Res. Logistics 52(3), 243–252 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  118. Yamamoto, H., Zuo, M.J., Akiba, T., Tian, Z.: Recursive formulas for the reliability of multi-state consecutive-k-out-of-n: G systems. IEEE Trans. Reliab. 55(1), 98–104 (2006)CrossRefGoogle Scholar
  119. Yi, H., Cui, L.R., Gao, H.D.: Reliabilities of some multistate consecutive-k systems. IEEE Trans. Reliab. (2019).  https://doi.org/10.1109/tr.2019.2897726CrossRefGoogle Scholar
  120. Zhang, Y.L., Lam, Y.: Reliability of consecutive-k-out-of-n: G repairable system. Int. J. Syst. Sci. 29, 1375–1379 (1998)zbMATHCrossRefGoogle Scholar
  121. Zhao, X., Cui, L.R.: Reliability evaluation of generalised multi-state k-out-of-n systems based on FMCI approach. Int. J. Syst. Sci. 41(12), 1437–1443 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  122. Zhao, X., Cui, L.R., Kuo, W.: Reliability for sparsely connected consecutive-k systems. IEEE Trans. Reliab. 56(3), 516–524 (2007)CrossRefGoogle Scholar
  123. Zhao, X., Cui, L.R., Zhao, W., Liu, F.: Exact reliability of a linear connected-(r, s)-out-of-(m, n): F system. IEEE Trans. Reliab. 60(3), 689–698 (2011a)CrossRefGoogle Scholar
  124. Zhao, X., Xu, Y., Liu, F.Y.: State distributions of multi-state consecutive-k systems. IEEE Trans. Reliab. 61(2), 274–281 (2012)CrossRefGoogle Scholar
  125. Zhao, X., Zhao, W., Xie, W.J.: Two-dimensional linear connected-k system with trinary states and its reliability. J. Syst. Eng. Electron. 22(5), 866–870 (2011b)MathSciNetCrossRefGoogle Scholar
  126. Zhu, X.Y., Boushaba, M.: A linear weighted (n, f, k) system for non-homogeneous Markov-dependent components. IISE Transactions 49(7), 722–736 (2017)CrossRefGoogle Scholar
  127. Zhu, X.Y., Boushaba, M., Coit, D.W., Benyahia, A.: Reliability and importance measures for m-consecutive-k, l-out-of-n system with non-homogeneous Markov-dependent components. Reliab. Eng. Syst. Saf. 167, 1–9 (2017)CrossRefGoogle Scholar
  128. Zhu, X.Y., Boushaba, M., Boulahia, A., Zhao, X.: A linear m-consecutive-k-out-of-n system with sparse d of non-homogeneous Markov-dependent components. Proc. IMechE Part O: J. Risk Reliab. (2018).  https://doi.org/10.1177/1748006x18776189CrossRefGoogle Scholar
  129. Zhu, X.Y., Boushaba, M., Reghioua, M.: Joint reliability importance in a consecutive-k-out-of-n: F system and an m-consecutive-k-out-of-n: F system for Markov-dependent components. IEEE Trans. Reliab. 64(2), 784–798 (2015)CrossRefGoogle Scholar
  130. Zhu, X.Y., Boushaba, M., Reghioua, M.: Reliability and joint reliability importance in a consecutive-k-within-m-out-of-n: F system with Markov-dependent components. IEEE Trans. Reliab. 65(2), 802–815 (2016)CrossRefGoogle Scholar
  131. Zhuang, X.C., Yu, T.X., Shen, L.J.: On capacity evaluation for multi-state weighted k-out-of-n system. Commun. Stat. Simul. Comput. 3, 1–16 (2018)CrossRefGoogle Scholar
  132. Zuo, M.J.: Reliability & design of 2-dimensional consecutive k-out-of-n: F systems. IEEE Trans. Reliab. 42(3), 488–490 (1993)zbMATHCrossRefGoogle Scholar
  133. Zuo, M.J., Liang, M.: Reliability of multistate consecutively-connected systems. Reliab. Eng. Syst. Saf. 44(2), 173–176 (1994)CrossRefGoogle Scholar
  134. Zuo, M.J., Lin, D., Wu, Y.: Reliability evaluation of combined k-out-of-n: F, consecutive-k-out-of-n: F and linear connected-(r, s)-out-of-(m, n): F system structures. IEEE Trans. Reliab. 49(1), 99–104 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Management and EconomicsBeijing Institute of TechnologyBeijingChina
  2. 2.School of Mathematics and Computer ScienceYan’an UniversityYan’anChina

Personalised recommendations