Skip to main content

Third Technological Revolution

  • Chapter
  • First Online:
A History of Mechanical Engineering
  • 1190 Accesses

Abstract

After WWII, the Third Technological Revolution appeared in the horizon, which has been unprecedentedly influencing all aspects of human society. The First and Second Technological Revolutions are both centered around power, while the third one is developed around information. Mechanical engineering, being backbone in the past two revolutions, was shifted aside and gave place to information, although it is still a corner stone in the economy.

The First Wave of changethe agricultural revolutiontook thousands of years to play itself out. The Second Wavethe rise of industrial civilizationtook a mere three hundred years. Today history is even more accelerative, and it is likely that the Third Wave will sweep across history and complete itself in a few decades.

—Alvin Toffler (American writer, 1928–2016): The Third Wave, 1980

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agar, J. (2012). Science in the 20th Century and Beyond. Cambridge, U.K.: Polity Press.

    Google Scholar 

  • Bertalanffy L. (1949). Das biologische Weltbild. Bern: Europäische Rundschau. (In English: (1952). Problems of life: An evaluation of modern biological and scientific thought. New York: Harper.)

    Google Scholar 

  • Bertsekas, D. (1999). Nonlinear programming (2nd ed.). Cambridge, MA: Athena Scientific.

    MATH  Google Scholar 

  • Bracewell, R. (2000). The Fourier transform and its applications (3rd ed.). Boston: McGraw-Hill.

    MATH  Google Scholar 

  • Brebbia, C. A. (1991). Boundary element technology. Netherlands: Springer.

    MATH  Google Scholar 

  • Buchberger, B., et al. (Eds.). (1983). Computer algebra: Symbolic and algebraic computation. Wien: Springer.

    MATH  Google Scholar 

  • Carter, C., & Norton, M. (2007). Ceramic materials: Science and engineering. New York: Springer.

    Google Scholar 

  • Chen, Y. (1993). Theory of bifurcation and chaos in non-linear systems. Beijing: Higher Education Press. (in Chinese).

    Google Scholar 

  • Chen, C. (2007). Introduction to scientific computation. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Chen, F., et al. (1997). Materials science. Tianjin: Tianjin Science and Technology Press. (in Chinese).

    Google Scholar 

  • Chen, Y., et al. (2007). Issues on modern mechanical nonlinear dynamics and optimal design technology. Chinese Journal of Mechanical Engineering, 43(11), 17–26. (in Chinese).

    Article  Google Scholar 

  • Cleveland, C., et al. (2004). Encyclopedia of energy-history of wind energy (Vol. VI). UK: Elsevier.

    Google Scholar 

  • Clough, R., & Wilson, E. (1999). Early finite element research at Berkeley, 5th U. S. Conference on Computational Mechanics (Online). Available from: http://www.edwilson.org/History/fe-history.pdf. Accessed: March 10, 2017.

  • Crandall, S. (Ed.). (1958). Random vibration. Boston: MIT Press.

    Google Scholar 

  • Dumas II, J. D. (2016). Computer architecture: Fundamentals and principles of computer design (p. 340). CRC Press.

    Google Scholar 

  • Fourier, J. (1822). Théorie analytique de la chaleur. Paris: Firmin Didot, père et fils. (in French).

    MATH  Google Scholar 

  • Gass, S. (2010). Linear programming methods and applications (5th ed.). Mineola, NY: Dover Publications.

    MATH  Google Scholar 

  • Giarratano, J., & Riley, G. (2005). Expert system: Principles and programming (4th ed.). Boston, U.S.: Thomson Course Technology, a division of Thomson Learning, Inc.

    Google Scholar 

  • Goldstine, H., & Goldstine, A. (1946). The electronic numerical integrator and computer (ENIAC). Mathematical Tables and Other Aids to Computation, 2(15), 97–110. (Also reprinted in The Origins of Digital Computers: Selected Papers (pp. 359–373). New York: Springer, 1982.)

    Google Scholar 

  • GSHCAS (Group of Science History of Chinese Academy of Sciences). (1985). A brief history of science and technology in 20th century. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Hall, G., & Watt, J. (1976). Modern numerical methods of ordinary differential equations. Oxford: Clarendon press.

    MATH  Google Scholar 

  • Huang, Z. (2006). World history (Contemporary volume). Wuhan: Huazhong Normal University Press. (in Chinese).

    Google Scholar 

  • Jaffard, S., Meyer, Y., & Ryan, R. (2001). Wavelets: Tools for science and technology. France: National Defence Industry Press.

    Book  MATH  Google Scholar 

  • Jones, V. (1985). Manhattan: The army and the atomic bomb. Washington, D.C.: United States Army Center of Military History.

    Google Scholar 

  • Kalpakjian, S., & Schmid, S. (2013). Manufacturing engineering & technology (7th ed.). Pearson.

    Google Scholar 

  • Kane, T., & Wang, C. (1965). On the derivation of equations of motion. Journal of the Society for Industrial and Applied Mathematics, 13, 487–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy, G. (1983). Vengeance Weapon 2: The V-2 Guided Missile (pp. 27, 74). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Kenneth, D. (2005). Fifty years of systems science: Further reflections. Systems Research and Behavioral Science, 22, 355–361.

    Article  Google Scholar 

  • Kim, B. K. (2005). Internationalising the internet the co-evolution of influence and technology (pp. 51–55). Edward Elgar.

    Google Scholar 

  • Lange, J., & Abu-Zahra, N. (2002). Tool chatter monitoring in turning operations using wavelet analysis of ultrasound waves. International Journal of Advanced Manufacturing Technology, 20(4), 248–254.

    Article  Google Scholar 

  • Lewis, C. (2008). The red stuff: A history of the public and material culture of early human spaceflight in the U.S.S.R. (pp. 57–59). Ann Arbor, Michigan: ProQuest LLC.

    Google Scholar 

  • Li, S. (1997). Theory of computational methods for stiff differential equations. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Li, D., et al. (2005). Micro and nano technology and its application. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Libbrecht, U. (1973). Chinese mathematics in the thirteenth century: The Shu-shu chui-chang of Ch’in Chui-shao (1st ed.). The MIT Press.

    Google Scholar 

  • Liu, J. (2010). Application of solar energy: Principle, technology and engineering. Beijing: Publishing House of Electronics Industry. (in Chinese).

    Google Scholar 

  • Lorenz, E. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20, 130–141.

    Article  MathSciNet  MATH  Google Scholar 

  • McPhee, J., Ishac, M., & Andrews, G. (1996). Wittenburg’s formulation of multibody dynamics equations from a graph-theoretic perspective. Mechanism and Machine Theory, 31(2), 201–213.

    Article  Google Scholar 

  • Murray, C. (1997). The supermen: The story of Seymour Cray and the technical wizards behind the supercomputer. Hoboken, NJ: Wiley.

    Google Scholar 

  • National Research Council. (1995). Computational and theoretical techniques for materials science. Washington, DC: The National Academies Press. https://doi.org/10.17226/9025.

  • Nayfeh, A., & Mook, D. (1995). Nonlinear Oscillations. Weinheim, Germany: Wiley-VCH.

    Book  MATH  Google Scholar 

  • Neufeld, M. (2008). Von Braun: Dreamer of space, engineer of war. Vintage Books.

    Google Scholar 

  • Paez, T. L. (2011). Random vibration—History and overview. In T. Proulx (Ed.), Rotating machinery, structural health monitoring, shock and vibration (Vol. 5). Conference Proceedings of the Society for Experimental Mechanics Series. New York: Springer.

    Google Scholar 

  • Peng, X. (1993). Why did the third technological revolution arise in the United States? Journal of Hunan Normal University (Social Sciences Edition), 6, 90–94. (in Chinese).

    Google Scholar 

  • Peng, S. (1995). Second world war and third technological revolution. Journal of Northwest University (Philosophy and Social Sciences Edition), 25(3), 3–10.

    Google Scholar 

  • Peterson, I. (1995). Newton’s Clock: Chaos in the solar system. W H Freeman & Co.

    Google Scholar 

  • Qian, X. (2011). Selected works on systematic science. Beijing: China Astronautic Publishing House. (in Chinese).

    Google Scholar 

  • Quan, L. (2002). A brief history of science and technology. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Roberson, R., & Wittenburg, J. (1966). A dynamical formalism for an arbitrary number of interconnected rigid bodies with reference to the problem of satellite attitude control. Proceedings of the Third International Congress of Automatic Control, London.

    Google Scholar 

  • Roberts, J., & Spanos, P. (2003). Random vibrations and statistical linearization. Dover Publications.

    Google Scholar 

  • Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

  • Schaffarczyk, A. (Ed.). (2014). Understanding wind power technology: Theory, deployment and optimisation. Wiley.

    Google Scholar 

  • Schwab, K. (2016). The fourth industrial revolution. World Economic Forum.

    Google Scholar 

  • Shabana, A. (1997). Flexible multibody dynamics: Review of past and recent developments. Multibody System Dynamics, 1, 189–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423, 27(4), 623–666.

    Google Scholar 

  • Shi, Z. (2000). The third scientific method: Computation in computer times. Guangzhou: Jinan University Press. (in Chinese).

    Google Scholar 

  • Song, J., & Haug, E. (1980). Dynamic analysis of planar flexible mechanisms. Computer Methods in Applied Mechanics and Engineering, 24, 359–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Strohmaier, E., et al. (2016, June). The Top 500 (Online). Top 500. Available from: https://www.top500.org/lists/2016/06/. Accessed March 18, 2017.

  • Tsien, H. S. (1954). Engineering cybernetics. New York: McGraw Hill.

    Google Scholar 

  • Wallace, J., & Erickson, J. (1992). Hard drive: Bill gates and the making of the Microsoft empire. Chichester, NY: Wiley.

    Google Scholar 

  • Wang, G., & Ai, D. (2006). Introduction to new energy. Beijing: Chemical Industry Press. (in Chinese).

    Google Scholar 

  • Wiener, N. (1948). Cybernetics: Or control and communication in the animal and the machine. Paris: Hermann & Cie.

    Google Scholar 

  • Williams, T., et al. (1958). A history of technology (Vol. VII). New York: Oxford University Press.

    Google Scholar 

  • Winston, B. (1998). Media technology and society: A history: From the telegraph to the internet. Abingdon-on-Thames, UK: Routledge.

    Google Scholar 

  • Wittenburg, J. (1977). Dynamics of systems of rigid bodies. Stuttgart: B. G. Teubner.

    Book  MATH  Google Scholar 

  • Wu, J. (2000). A history of mechanics. Chongqing: Chongqing Press. (in Chinese).

    Google Scholar 

  • Xiong, J., et al. (2000). Materials design. Tianjin: Tianjin University Press. (in Chinese).

    Google Scholar 

  • Yu, D. (2001). Finite element, boundary element and symplectic algorithm: Important contribution of Feng school to development of computational mathematics. Research on Advanced Mathematics, 1(4), 5–10. (in Chinese).

    Google Scholar 

  • Yu, Q., & Hong, J. (1999). Some topics on flexible multibody system dynamics. Advances in Mechanics, 29(2), 145–154. (in Chinese).

    Google Scholar 

  • Zhang, C., et al. (1997). Analysis and design of elastic linkages (2nd ed.). Beijing: Machinery Industry Press. (in Chinese).

    Google Scholar 

  • Zhang, W., et al. (2002). Periodic vibration and bifurcation of non-linear systems. Beijing: Science Press. (in Chinese).

    Google Scholar 

  • Zhu, W. (1998). Random vibration (2nd ed.). Beijing: Science Press.

    Google Scholar 

  • Zou, J., Chen, J., & Pu, Y. (2004). Wavelet time-frequency analysis of torsional vibrations in rotor system with a transverse crack. Computers & Structures, 82(15–16), 1181–1187.

    Article  Google Scholar 

  • 三岛良绩. (1985). 新材料開發和材料設計學. Tokyo: Soft Science Inc. (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, C., Yang, J. (2020). Third Technological Revolution. In: A History of Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-0833-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0833-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0832-5

  • Online ISBN: 978-981-15-0833-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics