Advertisement

Symmetric Lattice-Based PAKE from Approximate Smooth Projective Hash Function and Reconciliation Mechanism

  • Zilong WangEmail author
  • Honggang HuEmail author
  • Mengce Zheng
  • Jiehui Nan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1105)

Abstract

Password-based authenticated key exchange (PAKE) protocols allow two users who share only a short, low-entropy password to establish a consistent cryptographically strong session key. In 2009, Katz and Vaikuntanathan gave the first lattice-base PAKE from approximate smooth projective hash function (ASPHF) which is a variant of smooth projective hash function (SHPF). In 2017, Zhang and Yu introduced a two-round PAKE based on splittable PKEs. An error-correcting code (ECC) was used in these protocols to deal with the errors intrinsically in learning with errors (LWE) assumption, and the protocol is asymmetric as the session key is decided be just one user. In this paper, an error correcting technique called reconciliation mechanism, which was first introduced to construct a key exchange protocol from lattice, is adopted to construct more efficient lattice-based PAKEs with reduced computation complexity and communication complexity. Moreover, the new PAKEs are symmetric.

Keywords

Lattice-based cryptosystem PAKE Approximate smooth projective hash function Reconciliation mechanism 

References

  1. 1.
    Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistinguishable under plaintext-checkable attacks. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 332–352. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46447-2_15CrossRefzbMATHGoogle Scholar
  2. 2.
    Abdalla, M., Chevalier, C., Pointcheval, D.: Smooth projective hashing for conditionally extractable commitments. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 671–689. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03356-8_39CrossRefGoogle Scholar
  3. 3.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefzbMATHGoogle Scholar
  4. 4.
    Alkim, E., Ducas, L., Poppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. In: USENIX Security Symposium, pp. 327–343 (2016)Google Scholar
  5. 5.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_11CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48329-2_21CrossRefGoogle Scholar
  7. 7.
    Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password-Based Protocols Secure Against Dictionary Attacks. IEEE Computer Society (1992)Google Scholar
  8. 8.
    Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 449–475. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_25CrossRefGoogle Scholar
  9. 9.
    Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million passwords. In: Security & Privacy. IEEE (2012)Google Scholar
  10. 10.
    Berlekamp, E.R., McEliece, R.J., Van Tilborg, H.C.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bos, J., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the TLS protocol from the ring learning with errors problem. In: IEEE Symposium on Security and Privacy, pp. 553–570 (2015)Google Scholar
  12. 12.
    Boyko, V., MacKenzie, P., Patel, S.: Provably Secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_12CrossRefGoogle Scholar
  13. 13.
    Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. SIAM J. Comput. 43(2), 831–871 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from Ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22792-9_29CrossRefGoogle Scholar
  15. 15.
    Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_24CrossRefGoogle Scholar
  16. 16.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_4CrossRefGoogle Scholar
  18. 18.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ding, J., Xie, X., Lin, X.: A Simple Provably Secure Key Exchange Scheme Based on the Learning with Errors Problem, http://eprint.iacr.org/2012/688 (2012)
  20. 20.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of The Fortieth Annual ACM Symposium on Theory of Computing (STOC 2008), pp. 197–206. ACM, New York (2008)Google Scholar
  21. 21.
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_33CrossRefGoogle Scholar
  22. 22.
    Groce, A., Katz, J.: A new framework for efficient password-based authenticated key exchange. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, CCS 2010, Chicago, Illinois, USA, 4–8 October 2010Google Scholar
  23. 23.
    Jin, Z., Zhao, Y.: Optimal Key Consensus in Presence of Noise. http://eprint.iacr.org/2017/1058 (2017)
  24. 24.
    Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_29CrossRefGoogle Scholar
  25. 25.
    Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_37CrossRefGoogle Scholar
  26. 26.
    Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key exchange. J. Cryptol. 26(4), 714–743 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Li, Z., Wang, D.: Two-round PAKE protocol over lattices without NIZK. In: Guo, F., Huang, X., Yung, M. (eds.) Inscrypt 2018. LNCS, vol. 11449, pp. 138–159. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-14234-6_8CrossRefGoogle Scholar
  28. 28.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_21CrossRefGoogle Scholar
  29. 29.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 1–35 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    MacKenzie, P., Patel, S., Swaminathan, R.: Password-authenticated key exchange based on RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 599–613. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44448-3_46CrossRefGoogle Scholar
  31. 31.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: Annual Symposium on Foundations Of Computer Science. IEEE Computer Society (2004)Google Scholar
  32. 32.
    Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11659-4_12CrossRefzbMATHGoogle Scholar
  33. 33.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 506–519 (2009)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, J., Yu, Y.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10626, pp. 37–67. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70700-6_2CrossRefGoogle Scholar
  35. 35.
    Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_24CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, School of Information Science and TechnologyUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations