Advertisement

CLIBDA: A Deniable Authentication Scheme for Pervasive Computing Environment

  • Emmanuel Ahene
  • Yuanfeng Guan
  • Zhiwei Zhang
  • Fagen LiEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1105)

Abstract

Pervasive computing environments permits users to get the services they require at anywhere and anytime. Security turns to be a major challenge in pervasive computing environments due to its heterogeneity, dynamicity, mobility and openness. In this paper, we propose a new heterogeneous deniable authentication scheme called CLIBDA for pervasive computing environments utilizing bilinear pairings. The proposed CLIBDA scheme permits a sender in certificateless cryptography (CLC) setting to transmit a message securely to a receiver in an identity based cryptography (IBC) setting. Detailed security analysis shows that the CLIBDA scheme is secure in the random oracle model (ROM) under the bilinear Diffie–Hellman assumption. Additionally, CLIBDA supports batch verification which is necessary for the speed up of the verification of authenticators. This characteristic makes the CLIBDA scheme suitable in pervasive computing environments.

Keywords

Pervasive computing Deniable authentication Authentication Heterogeneity Security 

References

  1. 1.
    Alomair, B., Poovendran, R.: Efficient authentication for mobile and pervasive computing. IEEE Trans. Mob. Comput. 13(3), 469–481 (2014)CrossRefGoogle Scholar
  2. 2.
    Bettini, C., Riboni, D.: Privacy protection in pervasive systems: state of the art and technical challenges. Pervasive Mob. Comput. 17(1), 159–174 (2015)CrossRefGoogle Scholar
  3. 3.
    Ren, K., Lou, W., Kim, K., Deng, R.: A novel privacy preserving authentication and access control scheme for pervasive computing environments. IEEE Trans. Veh. Technol. 55(4), 1373–1384 (2006)CrossRefGoogle Scholar
  4. 4.
    Long, M., Wu, C.H.: Energy-efficient and intrusion resilient authentication for ubiquitous access to factory floor information. IEEE Trans. Ind. Inform. 2(1), 40–47 (2006)CrossRefGoogle Scholar
  5. 5.
    Yao, L., Wang, L., Kong, X., Wu, G., Xia, F.: An inter-domain authentication scheme for pervasive computing environment. Comput. Math. Appl. 60(2), 234–244 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Tan, Z.: A lightweight conditional privacy-preserving authentication and access control scheme for pervasive computing environments. J. Netw. Comput. Appl. 35(6), 1839–1846 (2012)CrossRefGoogle Scholar
  7. 7.
    Park, J.H.: An authentication protocol offering service anonymity of mobile device in ubiquitous environment. J. Supercomput. 62(1), 105–117 (2012)CrossRefGoogle Scholar
  8. 8.
    Mayrhofer, R., Fuß, J., Ion, I.: UACAP: a unified auxiliary channel authentication protocol. IEEE Trans. Mob. Comput. 12(4), 710–721 (2013)CrossRefGoogle Scholar
  9. 9.
    Wu, Z.Y., Wu, J.C., Lin, S.C., Wang, C.: An electronic voting mechanism for fighting bribery and coercion. J. Netw. Comput. Appl. 40(1), 139–150 (2014)CrossRefGoogle Scholar
  10. 10.
    Aumann, Y., Rabin, M.O.: Authentication, enhanced security and error correcting codes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 299–303. Springer, Heidelberg (1998).  https://doi.org/10.1007/BFb0055736CrossRefGoogle Scholar
  11. 11.
    Harn, L., Ren, J.: Design of fully deniable authentication service for e-mail applications. IEEE Commun. Lett. 12(3), 219–221 (2008)CrossRefGoogle Scholar
  12. 12.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-39568-7_5CrossRefGoogle Scholar
  13. 13.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40061-5_29CrossRefGoogle Scholar
  14. 14.
    Wang, B., Song, Z.: A non-interactive deniable authentication scheme based on designated verifier proofs. Inf. Sci. 179(6), 858–865 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In: 12th ACM Conference on Computer and Communications Security, pp. 112–121. ACM, Maryland (2005)Google Scholar
  16. 16.
    Tian, H., Chen, X., Jiang, Z.: Non-interactive deniable authentication protocols. In: Wu, C.-K., Yung, M., Lin, D. (eds.) Inscrypt 2011. LNCS, vol. 7537, pp. 142–159. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34704-7_12CrossRefGoogle Scholar
  17. 17.
    Li, F., Takagi, T.: Cryptanalysis and improvement of robust deniable authentication protocol. Wirel. Pers. Commun. 69(4), 1391–1398 (2013)CrossRefGoogle Scholar
  18. 18.
    Gambs, S., Onete, C., Robert, J.: Prover anonymous and deniable distancebounding authentication. In: 9th ACM Symposium on Information Computer and Communications Security, Kyoto, pp. 501–506. ACM (2014)Google Scholar
  19. 19.
    Zeng, S., Chen, Y., Tan, S., He, M.: Concurrently deniable ring authentication and its application to LBS in VANETs. Peer-to-Peer Netw. Appl. 10(4), 844–856 (2017)CrossRefGoogle Scholar
  20. 20.
    Lu, R., Cao, Z., Wang, S., Bao, H.: A new ID-based deniable authentication protocol. Informatica 18(1), 67–78 (2007)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Li, F., Xiong, P., Jin, C.: Identity-based deniable authentication for ad hoc networks. Computing 96(9), 843– 853 (2014)Google Scholar
  22. 22.
    Yao, A., Zhao, Y.: Privacy-preserving authenticated key-exchange over Internet. IEEE Trans. Inf. Forensics Secur. 9(1), 125–140 (2014)Google Scholar
  23. 23.
    Jin, C., Xu, C., Li, F., Zhang, X.: A novel certificateless deniable authentication protocol. Int. J. Comput. Appl. 37(3–4), 181–192 (2015)Google Scholar
  24. 24.
    Jin, C., Xu, C., Zhang, X., Li, F.: An efficient certificateless deniable authentication protocol without pairings. Int. J. Electron. Secur. Digit. Forensics 7(2), 179–196 (2015)CrossRefGoogle Scholar
  25. 25.
    Li, F., Hong, J., Omala, A.: Practical deniable authentication for pervasive computing environments. Wirel. Netw. 24(1), 139–149 (2018)CrossRefGoogle Scholar
  26. 26.
    Jin, C., Chen, G., Yu, C., Zhao, J.: Heterogeneous deniable authentication for e-voting systems. In: Li, F., Takagi, T., Xu, C., Zhang, X. (eds.) FCS 2018. CCIS, vol. 879, pp. 41–54. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-13-3095-7_4CrossRefGoogle Scholar
  27. 27.
    Choon, J.C., Hee Cheon, J.: An identity-based signature from gap Diffie-Hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36288-6_2 CrossRefGoogle Scholar
  28. 28.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13CrossRefGoogle Scholar
  29. 29.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. J. Cryptol. 13(3), 361–396 (2000)CrossRefGoogle Scholar
  30. 30.
    Scott, M.: Efficient implementation of cryptographic pairings (2007). http://www.pairing-conference.org/2007/invited/Scottslide.pdf

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.SI-TECH Information Technology Co. Ltd.BeijingChina

Personalised recommendations