Identity-Based Encryption Resilient to Continual Leakage Without Random Oracles

  • Yuyan Guo
  • Mingming JiangEmail author
  • Shimin Wei
  • Ming Xie
  • Mei Sun
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1105)


In general, the security of identity-based encryption schemes has been considered under the ideal circumstances, where the adversaries do not acquire the secret internal state of the schemes. However, the adversaries can obtain partial information for the secret key through the various key leakage attacks in reality. In order to further describe the continual leakage attack, we formally define a secure model for identity-based encryption. The adversary is allowed to continuously acquire part of the secret information through the continual leakage attack in the secure model. Then we give a new type identity-based encryption scheme resilient to continual leakage. This scheme which is based on an identity-based key encapsulation mechanism is secure against chosen-ciphertext attack under the hardness of the computational bilinear Diffie-Hellman problem in the standard model. This proposed scheme enhances the continual leakage-resilient property and enjoys less computation cost.


Identity-based encryption Continual leakage Key encapsulation mechanism 



We are thankful to anonymous referees for their helpful comments. This paper is supported by the National Natural Science Foundation of China under Grant No. 61902140, No. 60573026, the Anhui Provincial Natural Science Foundation under Grant No. 1908085QF288, No. 1708085QF154, the Nature Science Foundation of Anhui Higher Education Institutions under Grant No. KJ2018A0398, No. KJ2019A0605, No. KJ2018A0396, No. KJ2019B06.


  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). Scholar
  3. 3.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). Scholar
  4. 4.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005). Scholar
  5. 5.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006). Scholar
  6. 6.
    Jin, L., Li, J., Chen, X., et al.: Identity-based encryption with outsourced revocation in cloud computing. IEEE Trans. Comput. 64(2), 425–437 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wu, L., Zhang, Y., Choo, K.K.R., et al.: Efficient identity-based encryption scheme with equality test in smart city. IEEE Trans. Sustain. Comput. 3(1), 44–55 (2017)CrossRefGoogle Scholar
  8. 8.
    Lai, J., Mu, Y., Guo, F.: Efficient identity-based online/offline encryption and signcryption with short ciphertext. Int. J. Inf. Secur. 16(3), 1–13 (2017)CrossRefGoogle Scholar
  9. 9.
    Zhang, L., Mu, Y., Wu, Q.: Compact anonymous hierarchical identity-based encryption with constant size private keys. Comput. J. 59(4), 452–461 (2016)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Micali, S., Reyzin, L.: Physically observable cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004). Scholar
  11. 11.
    Halderman, J.A., Schoen, S.D., Heninger, N., et al.: Lest we remember: cold-boot attacks on encryption keys. Commun. ACM 52(5), 91–98 (2009)CrossRefGoogle Scholar
  12. 12.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009). Scholar
  13. 13.
    Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010). Scholar
  14. 14.
    Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88. Springer, Heidelberg (2011). Scholar
  15. 15.
    Halevi, S., Lin, H.: After-the-fact leakage in public-key encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 107–124. Springer, Heidelberg (2011). Scholar
  16. 16.
    Galindo, D., Herranz, J., Villar, J.: Identity-based encryption with master key-dependent message security and leakage-resilience. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 627–642. Springer, Heidelberg (2012). Scholar
  17. 17.
    Sun, S., Gu, D., Liu, S.: Efficient chosen ciphertext secure identity-based encryption against key leakage attacks. Secur. Commun. Netw. 9(11), 1417–1434 (2016)CrossRefGoogle Scholar
  18. 18.
    Li, J., Teng, M., Zhang, Y., et al.: A leakage-resilient CCA-secure identity-based encryption scheme. Comput. J. 59(7), 1066–1075 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-key encryption in the bounded-retrieval model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010). Scholar
  20. 20.
    Yuen, T.H., Zhang, Y., Yiu, S.M., Liu, Joseph K.: Identity-based encryption with post-challenge auxiliary inputs for secure cloud applications and sensor networks. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 130–147. Springer, Cham (2014). Scholar
  21. 21.
    Li, J., Yu, Q., Zhang, Y.: Identity-based broadcast encryption with continuous leakage resilience. Inf. Sci. 429(1), 177–193 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li, J., Guo, Y., Yu, Q., et al.: Provably secure identity-based encryption resilient to post-challenge continuous auxiliary input leakage. Secur. Commun. Netw. 9(10), 1016–1024 (2016)CrossRefGoogle Scholar
  23. 23.
    Zhou, Y., Yang, B., Mu, Y., et al.: Continuous leakage-resilient identity-based encryption without random oracles. Comput. J. 61(4), 586–600 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhou, Y., Yang, B., Mu, Y.: Continuous leakage-resilient identity-based encryption with leakage amplification. Des. Codes Cryptogr. (2019). Scholar
  25. 25.
    Goldreich O., Levin A.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Annual ACM Symposium on Theory of Computing-STOC 1989, Washington, pp. 25–32 (1989)Google Scholar
  26. 26.
    Yuen, T.H., Chow, S.S.M., Zhang, Y., Yiu, S.M.: Identity-based encryption resilient to continual auxiliary leakage. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 117–134. Springer, Heidelberg (2012). Scholar
  27. 27.
    Chen, Y., Chen, L., Zhang, Z.: CCA secure IB-KEM from the computational bilinear Diffie-Hellman assumption in the standard model. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp. 275–301. Springer, Heidelberg (2012). Scholar
  28. 28.
    Lynn, B.: PBC (Pairing-Based Cryptography) Library (2012).

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yuyan Guo
    • 1
  • Mingming Jiang
    • 1
    Email author
  • Shimin Wei
    • 1
  • Ming Xie
    • 1
  • Mei Sun
    • 1
  1. 1.School of Computer Science and TechnologyHuaibei Normal UniversityHuaibeiChina

Personalised recommendations