Advertisement

New Key Recovery Attack on the MICKEY Family of Stream Ciphers

  • Lin DingEmail author
  • Dawu Gu
  • Lei Wang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1105)

Abstract

The well-known MICKEY 2.0 stream cipher, designed by Babbage and Dodd in 2006, is one of the seven finalists of the eSTREAM project. In this paper, new key recovery attack on the MICKEY family of stream ciphers in the single key setting is proposed. We prove that for a given variant of the MICKEY family of stream ciphers with a key size of \(n(\ge 80)\) bits and a IV size of m bits, \(0< m < n\), there certainly exists a key recovery attack in the single key setting, whose online time, memory, data and offline time complexities are all smaller than \(2^{n}\). Take MICKEY 2.0 with a 64-bit IV as an example. The new attack recovers all 80 key bits with an online time complexity of \(2^{78}\), an offline time complexity of \(2^{79}\) and a memory complexity of \(2^{45}\), requiring only 80 keystream bits. To the best of our knowledge, this paper presents the first cryptanalytic result of the MICKEY family of stream ciphers better than exhaustive key search.

Keywords

Cryptanalysis Key recovery attack MICKEY Stream cipher 

Notes

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions.

References

  1. 1.
    Wu, H.: The stream cipher HC-128. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 39–47. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_4CrossRefGoogle Scholar
  2. 2.
    Boesgaard, M., Vesterager, M., Zenner, E.: The rabbit stream cipher. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 69–83. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_7CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J.: The Salsa20 family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 84–97. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_8CrossRefGoogle Scholar
  4. 4.
    Berbain, C., et al.: Sosemanuk, a fast software-oriented stream cipher. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 98–118. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_9CrossRefGoogle Scholar
  5. 5.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_14CrossRefGoogle Scholar
  6. 6.
    Babbage, S., Dodd, M.: The MICKEY stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 191–209. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_15CrossRefGoogle Scholar
  7. 7.
    Cannière, C.D., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68351-3_18CrossRefGoogle Scholar
  8. 8.
    Babbage, S., Dodd, M.: The stream cipher MICKEY (version 1). ECRYPT Stream Cipher Project Report 2005/015 (2005). http://www.ecrypt.eu.org/stream
  9. 9.
    Hong, J., Kim, W.H.: TMD-Tradeoff and State Entropy Loss Considerations of Streamcipher MICKEY. In: Maitra, S., Madhavan, C., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 169–182. Springer, Heidelberg (2005).  https://doi.org/10.1007/11596219_14CrossRefGoogle Scholar
  10. 10.
    Tischhauser, E.: Nonsmooth cryptanalysis, with an application to the stream cipher mickey. J. Math. Cryptol. 4(4), 317–348 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ding, L., Guan, J.: Cryptanalysis of MICKEY family of stream ciphers. Secur. Commun. Netw. 6(8), 936–941 (2013)CrossRefGoogle Scholar
  12. 12.
    Helleseth, T., Jansen, C., Kazymyrov, O., Kholosha, A.: State space cryptanalysis of the MICKEY cipher. In: 2013 Workshop on Information Theory and Applications, pp. 1–10. IEEE Press, New York (2013)Google Scholar
  13. 13.
    Khoo, K., Tan, C.H.: New time-memory-data trade-off attack on the estream finalists and modes of operation of block ciphers. In: 7th ACM Symposium on Information, Compuer and Communications Security (ASIACCS 2012), pp. 20–21. ACM Press, New York (2013). http://www1.spms.ntu.edu.sg/~kkhoongm/TMD_IEEE_n.pdf
  14. 14.
    Ding, L., Jin, C.H., Guan, J., Qi, C.D.: New treatment of the BSW sampling and its applications to stream ciphers. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 136–146. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-319-06734-6_9CrossRefGoogle Scholar
  15. 15.
    Banik, S., Maitra, S.: A differential fault attack on MICKEY 2.0. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 215–232. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40349-1_13CrossRefGoogle Scholar
  16. 16.
    Karmakar, S., Chowdhury, D.R.: Differential fault analysis of MICKEY-128 2.0. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 52–59. IEEE Press, New York (2013)Google Scholar
  17. 17.
    Banik, S., Maitra, S., Sarkar, S.: Improved differential fault attack on MICKEY 2.0. Cryptology ePrint Archive, Report 2013/029. http://eprint.iacr.org/2013/029.pdf
  18. 18.
    Karmakar, S., Chowdhury, D.R.: Differential fault analysis of MICKEY family of stream ciphers. Cryptology ePrint Archive, Report 2014/262. http://eprint.iacr.org/2014/262.pdf
  19. 19.
    Liu, J., Gu, D.W., Guo, Z.: Correlation power analysis against stream cipher mickey v2. In: International Conference on Computational Intelligence and Security, pp. 320–324. IEEE Press, New York (2010)Google Scholar
  20. 20.
    Sandeep, S., Rajesh, C.B.: Differential power analysis on FPGA implementation of MICKEY 128. In: 3rd IEEE International Conference on Computer Science and Information Technology, pp. 667–671. IEEE Press, New York (2010)Google Scholar
  21. 21.
    Karmakar, S., Chowdhury, D.R.: Scan-based side channel attack on stream ciphers and its prevention. J. Cryptographic Eng. 8(4), 327–340 (2018)CrossRefGoogle Scholar
  22. 22.
    Dunkelman, O., Keller, N.: Treatment of the initial value in time-memory-data trade-off attacks on stream ciphers. Inf. Process. Lett. 107(5), 133–137 (2008)CrossRefGoogle Scholar
  23. 23.
    Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theor. 26(4), 401–406 (1980)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.PLA SSF Information Engneering UniversityZhengzhouChina
  3. 3.Westone Cryptologic Research CenterBeijingChina

Personalised recommendations