Hierarchical Identity-Based Signature over Verifiable Random Function

  • Juan RenEmail author
  • Leyou Zhang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1105)


Hierarchical computation makes an important role in constructing identity-based signature (IBS) since it provides a delegation mechanism to IBS, which results in the Hierarchical identity-based signature (HIBS). HIBS has widely potential applications in the large networks. However, the constructions available cannot propose a good trade-off for the private keys and signatures since the size of private keys or signatures depends on the identity depth. In this paper, a new hierarchical computation algorithm is introduced to construct HIBS scheme. The new scheme achieves O(1)-size private keys and signatures, which are independent of identity depth. It is the best trade-off at present. Furthermore, under the \(n+1-weak\) Computational Diffie-Hellman Exponent (\(n+1-wCDH\)) assumption, the scheme is provably secure against existential forgery in the standard model.


Hierarchical computation Verifiable random function IBS Constant size private keys Standard model Provable security 


  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Advance in Cryptography, pp. 47–53. ACM, Santa Barbara (1984)Google Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2001)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). Scholar
  4. 4.
    Gentry, C.: Practical identity-based encryption without random oracles. In: 24th Annual International Conference on The Theory and Applications of Cryptographic Techniques, pp. 445–464. ACM, Saint Petersburg (2006)Google Scholar
  5. 5.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002). Scholar
  6. 6.
    Waters, B.: Dual key encryption: realizing fully secure IBE and HIBE under simple assumption. In: 29th Annual International Cryptology Conference on Advances in Cryptology, pp. 619–636. ACM, Santa Barbara (2009)Google Scholar
  7. 7.
    Zhang, L., Hu, Y., Wu, Q.: Hierarchical Identity-Based Encryption with Constant size private keys. ETRI J. 34(1), 142–145 (2012)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). Scholar
  9. 9.
    Cash, D., Hofheinz, D., Kiltz, E.: Bonsai trees, or how to delegate a lattice basis. In: 29th Annual International Conference on Theory and Applications of Cryptographic Techniques, pp. 523–552. ACM, French Riviera (2010)Google Scholar
  10. 10.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). Scholar
  11. 11.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Secure hierarchical identity based signature and its application. In: Lopez, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 480–494. Springer, Heidelberg (2004). Scholar
  12. 12.
    Li, J., Zhang, F., Wang, Y.: A new hierarchical ID-based cryptosystem and CCA-secure PKE. In: Zhou, X., et al. (eds.) EUC 2006. LNCS, vol. 4097, pp. 362–371. Springer, Heidelberg (2006). Scholar
  13. 13.
    Au, M., Liu, J., Yuen, T., et al.: Practical Hierarchical Identity Based Encryption and Signature schemes Without Random Oracles. Cryptology ePrint Archive, Report 2006/308 (2006)Google Scholar
  14. 14.
    Yuen, T., Susilo, W., Mu, Y.: How to construct identity-based signatures without the key escrow problem. Int. J. Inf. Secur. 9(4), 297–311 (2010)CrossRefGoogle Scholar
  15. 15.
    Au, M., Liu, J., Yuen, T., et al.: Efficient Hierarchical Identity Based Signature in the Standard Model. Cryptology ePrint Archive, Report 2007/68 (2007)Google Scholar
  16. 16.
    Zhang, L., Hu, Y., Wu, Q.: New construction of short hierarchical ID-based signature in the standard model. Fundamenta Informaticae 90(1–2), 191–201 (2009)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Zhang, L., Hu, Y., Wu, Q.: Adaptively secure hierarchical identity-based signature in the standard model. J. China Univ. Posts Telecommun. 17(6), 95–100 (2010)CrossRefGoogle Scholar
  18. 18.
    Abdalla, M., Catalano, D., Fiore, D.: Verifiable random functions from identity-based key encapsulation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 554–571. Springer, Heidelberg (2009). Scholar
  19. 19.
    Wu, Q., Zhang, L.: New efficient hierarchical identity-based signature. J. Comput. 8(3), 803–810 (2013)CrossRefGoogle Scholar
  20. 20.
    Rückert, M.: Strongly unforgeable signatures and hierarchical identity-based signatures from lattices without random oracles. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 182–200. Springer, Heidelberg (2010). Scholar
  21. 21.
    Tian, M., Huang, L., Yang, W.: A new hierarchical identity-based signature scheme from lattices in the standard model. Int. J. Netw. Secur. 14(6), 310–315 (2012)Google Scholar
  22. 22.
    Zhang, X., Xu, C., Jin, C., Xie, R.: Efficient forward secure identity-based shorter signature from lattice. Comput. Electr. Eng. 40(6), 1963–1971 (2014)CrossRefGoogle Scholar
  23. 23.
    Wang, X., Chen, P., Zhou, H., Su, J.: T-HIBE: a trustworthy and secure hierarchical identity-based encryption system. Chin. J. Electron (2015)Google Scholar
  24. 24.
    Li, J., Guo, Y., Yu, Q., Lu, Y., Zhang, Y.: Provably secure identity-based encryption resilient to post-challenge continuous auxiliary inputs leakage. Secur. Commun. Netw. 9(10), 1016–1024 (2016)CrossRefGoogle Scholar
  25. 25.
    Li, J., Teng, M., Zhang, Y., Yu, Q.: A leakage-resilient CCA-secure identity-based encryption scheme. Comput. J. 59(7), 1066–1075 (2017)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Li, J., Yu, Q., Zhang, Y.: Identity-based broadcast encryption with continuous leakage resilience. Inf. Sci. 429(3), 177–193 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anChina

Personalised recommendations