Advertisement

Optimal Estimation for Multirate Systems with Unreliable Measurements and Correlated Noise

  • Hongbin MaEmail author
  • Liping Yan
  • Yuanqing Xia
  • Mengyin Fu
Chapter

Abstract

In recent years, sensor networks have shown to be a persistent focus of research due to the rapid development of technology and its wildly use in multiple industries including military, law enforcement, agricultural and forestry-based projects, surveillance, and even information collection. Accordingly, considerable research attention has been devoted to state estimation techniques over sensor networks, not only due to a large number of potential applications but also because they provide more information than traditional communication systems with a single sensor.

References

  1. 1.
    S. Safari, F. Shabani, D. Simon, Multirate multisensor data fusion for linear systems using Kalman filters and a neural network. Aerosp. Sci. Technol. 39, 465–471 (2014)CrossRefGoogle Scholar
  2. 2.
    B. Chen, W. Zhang, L. Yu, Networked fusion Kalman filtering with multiple uncertainties. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2332C2349 (2015)Google Scholar
  3. 3.
    M.J.G. a Ligero, A. Hermoso-Carazo, J. Linares-Pérez, Distributed fusion estimation in networked systems with uncertain observations and markovian random delays. Signal Process. 106, 114–122 (2015)Google Scholar
  4. 4.
    L.P. Yan, X.R. Li, Y.Q. Xia, M.Y. Fu, Modeling and estimation of asynchronous multirate multisensor system with unreliable measurements. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2012–2026 (2015)CrossRefGoogle Scholar
  5. 5.
    J.X. Feng, M. Zeng, Optimal distributed Kalman filtering fusion for a linear dynamic system with cross-correlated noises. Int. J. Syst. Sci. 43(2), 385–398 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. Caballero-Águila, A. Hermoso-Carazo, J. Linares-Pérez, Optimal state estimation for networked systems with random parameter matrices, correlated noises and delayed measurements. Int. J. Gen. Syst. 44(2), 142–154 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    E.B. Song, Y.M. Zhu, J. Zhou, Z.S. You, Optimal Kalman filtering fusion with cross-correlated sensor noises. Automatica 43(8), 1450–1456 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y.M. Wang, X.R. Li, Distributed estimation fusion with unavailable cross-correlation. IEEE Trans. Aerosp. Electron. Syst. 48(1), 259–278 (2012)CrossRefGoogle Scholar
  9. 9.
    Q. Ge, T. Shao, Z. Duan, Performance analysis of the Kalman filter with mismatched noise covariances. IEEE Trans. Autom. Control. 61(12), 4014–4019.1 (2016)Google Scholar
  10. 10.
    Q. Ge, D. Xu, C. Wen, Cubature information filters with correlated noises and their applications in decentralized fusion. Signal Process. 94, 434–444 (2014)CrossRefGoogle Scholar
  11. 11.
    J.X. Feng, Z.D. Wang, M. Zeng, Distributed weighted robust Kalman filter fusion for uncertain systems with autocorrelated and cross-correlated noises. Inf. Fusion 14(1), 78–86 (2013)CrossRefGoogle Scholar
  12. 12.
    L.P. Yan, X.R. Li, Y.Q. Xia, M.Y. Fu, Optimal state estimation with cross-correlated noises. Automatica 44, 1135–1146 (2007)Google Scholar
  13. 13.
    A. Chiuso, L. Schenato, Information fusion strategies and performance bounds in packet-drop networks. Automatica 47(7), 1304–1316 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Caballero-guila, I. Garca-Garrido, J. Linares-Prez, Information fusion algorithms for state estimation in multi-sensor systems with correlated missing measurements. Appl. Math. Comput. 226(1), 548–563 (2014)zbMATHGoogle Scholar
  15. 15.
    B. Chen, W.A. Zhang, L. Yu, Distributed fusion estimation with missing measurements, random transmission delays and packet dropouts. IEEE Trans. Autom. Control 59(7), 1961–1967 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    S.L. Sun, L.H. Xie, W.D. Xiao, Y.C. Soh, Optimal linear estimation for systems with multiple packet dropouts. Automatica 44(5), 1333–1342 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Y. Liang, T.W. Chen, Q. Pan, Optimal linear state estimator with multiple packet dropouts. IEEE Trans. Autom. Control 55(6), 1428–1433 (2010)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Z.D. Wang, D.W.C. Ho, X.H. Liu, Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE Trans. Autom. Control 48(7), 1254–1258 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M.I. Jordan, S.S. Sastry, Kalman filtering with intermittent observations. IEEE Trans. Autom. Control 49(9), 1453–1464 (2004)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Kar, B. Sinopoli, J.M.F. Moura, Kalman filtering with intermittent observations: weak convergence to a stationary distribution. IEEE Trans. Autom. Control 57(2), 405–420 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    M.Y. Huang, S. Dey, Stability of Kalman filtering with Marikovian packet losses. Automatica 43(4), 598–607 (2007)MathSciNetCrossRefGoogle Scholar
  22. 22.
    S.Y. Wang, H.J. Fang, X.G. Tian, Recursive estimation for nonlinear stochastic systems with multi-step transmission delays, multiple packet dropouts and correlated noises. Signal Process. 115, 164–175 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Sun, L. Xie, W. Xiao, N. Xiao, Optimal filtering for systems with multiple packet. IEEE Trans. Circuits Syst. II Express Briefs 55(7), 695–699 (2008)Google Scholar
  24. 24.
    Y. Xia, J. Shang, J. Chen, G. Liu, Networked data fusion with packet losses and variable delays. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(5), 1107–1120 (2009)Google Scholar
  25. 25.
    Z. Xing, Y. Xia, L. Yan, K. Lu, Q. Gong, Multi-sensor distributed weighted Kalman filter fusion with network delays, stochastic uncertainties, autocorrelated and cross-correlated noises. IEEE Trans. Syst. Man Cybern. Syst. (2016).  https://doi.org/10.1109/TSMC.2016.2633283CrossRefGoogle Scholar
  26. 26.
    R. Cristi, M. Tummala, Multirate, multiresolution, recursive Kalman filter. Signal Process. 80(9), 1945–1958 (2000)CrossRefGoogle Scholar
  27. 27.
    Y. Liang, T.W. Chen, Q. Pan, Multi-rate optimal state estimation. Int. J. Control 82(11), 2059–2076 (2009)MathSciNetCrossRefGoogle Scholar
  28. 28.
    M.S. Mahmoud, M.F. Emzir, State estimation with asynchronous multi-rate multi-smart sensors. Inf. Sci. 196(1), 15–27 (2012)CrossRefGoogle Scholar
  29. 29.
    L.P. Yan, L. Jiang, Y.Q. Xia, M.Y. Fu, State estimation and data fusion for multirate sensor networks. Int. J. Adapt. Control Signal Process. 30(1), 3–15 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    L.P. Yan, B. Xiao, Y.Q. Xia, M.Y. Fu, State estimation for asynchronous multirate multisensor nonlinear dynamic systems with missing measurements. Int. J. Adapt. Control Signal Process. 26(6), 516–529 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    L.P. Yan, J. Liu, L. Jiang, Y.Q. Xia, B. Xiao, Y. Liu, M.Y. Fu, Optimal sequential estimation for multirate dynamic systems with unreliable measurements and correlated noise, (Chengdu, China) (2016), pp. 4900–4905Google Scholar
  32. 32.
    L. Yan, D. Zhou, M. Fu, Y. Xia, State estimation for asynchronous multirate multisensor dynamic systems with missing measurements. IET Signal Process. 4(6), 728–739 (2010)MathSciNetCrossRefGoogle Scholar
  33. 33.
    C. Zhu, Y.Q. Xia, L.H. Xie, L.P. Yan, Optimal linear estimation for systems with transmission delays and packet dropouts. IET Signal Process. 7(9), 814–823 (2012)CrossRefGoogle Scholar
  34. 34.
    S. Sun, Z. Deng, Multi-sensor optimal information fusion Kalman filter. Automatica 40(6), 1017–1023 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Science Press 2020

Authors and Affiliations

  • Hongbin Ma
    • 1
    Email author
  • Liping Yan
    • 1
  • Yuanqing Xia
    • 1
  • Mengyin Fu
    • 1
  1. 1.School of AutomationBeijing Institute of TechnologyBeijingChina

Personalised recommendations