Acute Lymphoblastic Leukemia Classification from Microscopic Images Using Convolutional Neural Networks

  • Jonas PrellbergEmail author
  • Oliver Kramer
Conference paper
Part of the Lecture Notes in Bioengineering book series (LNBE)


Examining blood microscopic images for leukemia is necessary when expensive equipment for flow cytometry is unavailable. Automated systems can ease the burden on medical experts for performing this examination and may be especially helpful to quickly screen a large number of patients. We present a simple, yet effective classification approach using a ResNeXt convolutional neural network with Squeeze-and-Excitation modules. The approach was evaluated in the C-NMC online challenge and achieves a weighted F1-score of 88.91 % on the test set. Code is available at


  1. 1.
    Chiaretti, S., Zini, G., Bassan, R.: Diagnosis and subclassification of acute lymphoblastic leukemia. Mediterranean J. Hematol. Infect. Dis. 6(1), e2014073–e2014073 (2014). Scholar
  2. 2.
    Duggal, R., Gupta, A., Gupta, R.: Segmentation of overlapping/touching white blood cell nuclei using artificial neural networks. In: CME Series on Hemato-Oncopathology. All India Institute of Medical Sciences (AIIMS), New Delhi, India (2016)Google Scholar
  3. 3.
    Duggal, R., Gupta, A., Gupta, R., Mallick, P.: Sd-layer: stain deconvolutional layer for CNNS in medical microscopic imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) Medical Image Computing and Computer Assisted Intervention (MICCAI 2017), pp. 435–443. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  4. 4.
    Duggal, R., Gupta, A., Gupta, R., Wadhwa, M., Ahuja, C.: Overlapping cell nuclei segmentation in microscopic images using deep belief networks. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, pp. 82:1–82:8. ICVGIP ’16, ACM, New York, NY, USA (2016).
  5. 5.
    Gupta, A., Duggal, R., Gupta, R., Kumar, L., Thakkar, N., Satpathy, D.: GCTI-SN: geometry-inspired chemical and tissue invariant stain normalization of microscopic medical images (Under review)Google Scholar
  6. 6.
    Gupta, R., Mallick, P., Duggal, R., Gupta, A., Sharma, O.: Stain color normalization and segmentation of plasma cells in microscopic images as a prelude to development of computer assisted automated disease diagnostic tool in multiple myeloma. Clin. Lymphoma Myeloma Leuk. 17(1),  e99 (18 Mar 2019) (2017)Google Scholar
  7. 7.
    Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)Google Scholar
  8. 8.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The International Conference on Learning Representations (ICLR ’15) (2015)Google Scholar
  9. 9.
    Labati, R.D., Piuri, V., Scotti, F.: All-IDB: the acute lymphoblastic leukemia image database for image processing. In: 2011 18th IEEE International Conference on Image Processing, pp. 2045–2048 (2011).
  10. 10.
    Madhloom, H.T., Kareem, S.A., Ariffin, H.: A robust feature extraction and selection method for the recognition of lymphocytes versus acute lymphoblastic leukemia. In: 2012 International Conference on Advanced Computer Science Applications and Technologies (ACSAT), pp. 330–335 (2012).
  11. 11.
    Mohapatra, S., Patra, D., Satpathy, S.: An ensemble classifier system for early diagnosis of acute lymphoblastic leukemia in blood microscopic images. Neural Comput. Appl. 24(7), 1887–1904 (2014). Scholar
  12. 12.
    Pui, C.H.: Acute Lymphoblastic Leukemia, pp. 39–43. Springer, Berlin (2017). Scholar
  13. 13.
    Putzu, L., Ruberto, C.D.: White blood cells identification and classification from leukemic blood image. In: International Work-Conference on Bioinformatics and Biomedical Engineering, IWBBIO 2013, Granada, Spain, 18–20 Mar 2013. Proceedings, pp. 99–106 (2013)Google Scholar
  14. 14.
    Rehman, A., Abbas, N., Saba, T., Rahman, S.I.U., Mehmood, Z., Kolivand, H.: Classification of acute lymphoblastic leukemia using deep learning. Microsc. Res. Tech. 81(11), 1310–1317 (2018). Scholar
  15. 15.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). Scholar
  16. 16.
    Shafique, S., Tehsin, S.: Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol. Cancer Res. Treat. 17, 1533033818802789 (2018). (pMID: 30261827)CrossRefGoogle Scholar
  17. 17.
    Vogado, L.H.S., Veras, R.D.M.S., Andrade, A.R., Araujo, F.H.D.D., e. Silva, R.R.V., Aires, K.R.T.: Diagnosing leukemia in blood smear images using an ensemble of classifiers and pre-trained convolutional neural networks. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 367–373 (2017).
  18. 18.
    Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)Google Scholar
  19. 19.
    Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Proceedings of the 27th International Conference on Neural Information Processing Systems, Vol. 2, pp. 3320–3328 (2014). NIPS’14, MIT Press, Cambridge, MA, USA,

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.University of OldenburgOldenburgGermany

Personalised recommendations