Advertisement

Classification of Leukemic B-Lymphoblast Cells from Blood Smear Microscopic Images with an Attention-Based Deep Learning Method and Advanced Augmentation Techniques

  • Christian MarzahlEmail author
  • Marc Aubreville
  • Jörn Voigt
  • Andreas Maier
Conference paper
Part of the Lecture Notes in Bioengineering book series (LNBE)

Abstract

Acute Lymphoblastic Leukemia (ALL) is a blood cell cancer type characterized by an increased number of immature lymphocytes. It is one of the leading cancer inflicted causes of death among children and affected around 876.000 people globally in 2015. In this work, we describe methods used for the “Classification of Normal versus Malignant Cells in B-ALL White Blood Cancer Microscopic Images” ISBI challenge. Due to the morphological similarity between malignant and normal cells, the classification of these cell types is a very challenging task, even for human experts. Deep learning using Convolutional Neural Networks (CNN) provides state-of-the-art techniques for image classification, even with limited annotation data, based on techniques like transfer learning and data augmentation. Our solution to tackle this classification problem is based upon advanced augmentation techniques to counter overfitting the small dataset and transfer learning with adaptive learning rates. Additionally, we incorporated a basic attention mechanism based on a region proposal subnetwork to boost our results for this competition. The ResNet 18 network with an additional regression head achieved a weighted F1 score of 0.8284 on the final test set and 0.8746 on the preliminary test set.

Keywords

Deep learning Acute Lymphoblastic Leukemia Attention modeling 

References

  1. 1.
    Andersen, C.A.F., Nielsen, H., Baldi, P., et al.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16(5), 412–424 (2000).  https://doi.org/10.1093/bioinformatics/16.5.412.CrossRefGoogle Scholar
  2. 2.
    Bain, B.J.: Blood Cells: A Practical Guide. Wiley (2014)Google Scholar
  3. 3.
    DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout (2017). arXiv:1708.04552
  4. 4.
    Duggal, R., Gupta, A., Gupta, R.: Segmentation of overlapping/touching white blood cell nuclei using artificial neural networks. In: CME Series on Hemato-Oncopathology. AIIMS (2016)Google Scholar
  5. 5.
    Duggal, R., Gupta, A., Gupta, R., et al.: SD-layer: stain deconvolutional layer for CNNs in medical microscopic imaging. In: Descoteaux, M., Maier-Hein, L., Franz, A., et al. (eds.) Medical Image Computing and Computer Assisted Intervention MICCAI 2017, pp. 435–443. Springer International Publishing, Cham (2017)CrossRefGoogle Scholar
  6. 6.
    Duggal, R., Gupta, A., Gupta, R., et al.: Overlapping cell nuclei segmentation in microscopic images using deep belief networks. In: Proceedings of the Tenth Indian Conference on Computer Vision, Graphics and Image Processing, p. 82. ACM (2016)Google Scholar
  7. 7.
    Gupta, R., Mallick, P., Duggal, R., et al.: Stain color normalization and segmentation of plasma cells in microscopic images as a prelude to development of computer assisted automated disease diagnostic tool in multiple myeloma. Clin. Lymphoma Myeloma Leukemia 17(1), e99 (2017)Google Scholar
  8. 8.
    He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE (2016)Google Scholar
  9. 9.
    Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struct. 405(2), 442–451 (1975)CrossRefGoogle Scholar
  10. 10.
    Pui, C.H., Evans, W.E.: Treatment of acute lymphoblastic leukemia. New Engl. J. Med. 354(2), 166–178 (2006)CrossRefGoogle Scholar
  11. 11.
    Redmon, J., Divvala, S., Girshick, R., et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)Google Scholar
  12. 12.
    Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)Google Scholar
  13. 13.
    Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)CrossRefGoogle Scholar
  14. 14.
    Shafique, S., Tehsin, S.: Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolutional neural networks. Technol. Cancer Res. Treat. 17, 1533033818802789 (2018)CrossRefGoogle Scholar
  15. 15.
    Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)Google Scholar
  16. 16.
    Vogado, L.H.S., Veras, R.D.M.S., Andrade, A.R., et al.: Diagnosing leukemia in blood smear images using an ensemble of classifiers and pre-trained convolutional neural networks. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 367–373. IEEE (2017)Google Scholar
  17. 17.
    Vos, T., Allen, C., Arora, M., et al.: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet 388(10053), 1545–1602 (2016)CrossRefGoogle Scholar
  18. 18.
    Wang, H., Naghavi, M., Allen, C., et al.: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. The Lancet 388(10053), 1459–1544 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhang, H., Cisse, M., Dauphin, Y.N., et al.: mixup: Beyond empirical risk minimization (2017). arXiv:1710.09412CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Pattern Recognition Lab, Computer ScienceFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Research & Development ProjectsEUROIMMUN Medizinische Labordiagnostika AGLübeckGermany

Personalised recommendations