Microstructures and Shock-Metamorphic Features of Minerals in Unmelted Chondritic Rock

  • Xiande XieEmail author
  • Ming Chen


Several shock effects were developed in unmelted minerals in the Yanzhuang meteorite, which include cracks, fractures, mosaic texture, dislocation, lamella, brecciation, structure disorder, and solid-state phase transition. Displectic glasses of olivine and pyroxene, and the high-pressure polymorphs of olivine and pyroxene, ringwoodite and majorite, had been firstly discovered in this H-group chondrite. Subgrain textures produced by solid-state recrystallization of silicate minerals have been found in the strongly deformed chondritic areas and the blackened chondritic areas of the meteorite. Kamacite in the blackened chondritic areas occurs as martensite which is characterized as ultrafine lath-shaped microstructures, and that in the strongly deformed chondritic areas occurs as microcrystalline aggregate. Kamacite and taenite in the weakly deformed chondritic areas occur as single crystal or polycrystalline aggregate, in which some contain Neuman’s lines.


H-chondrite Shock features Mosaicism Dislocations Brecciation Phase transition 


  1. Ahrens TJ, Tsay FD, Live DH (1976) Shock-induced fine-grained recrystallization of olivine: evidence against subsolidus reduction of Fe2+. In: Lunar planetary conference, vol 7, pp 1143–1156Google Scholar
  2. Ashworth JR, Mallinson LG (1985) Transmission electron microscopy of L-group chondrites, 2. Experimentally annealed Kyushu. Earth Planet Sci Lett 73:33–40CrossRefGoogle Scholar
  3. Binns RA, Davis RJ, Reed SJB (1969) Ringwoodite. Natural (Mg, Fe)2SiO4 spinnel in the Tenham meteorite. Nature 221:943–944CrossRefGoogle Scholar
  4. Brearley AJ, Rubie DC, Ito E (1992) Mechanisms of the transformations between the α, β and γ polymorphs of Mg2SiO4 at 15 GPa. Phys Chem Miner 18:343–358CrossRefGoogle Scholar
  5. Carter NL, Raleigh CB, DeCarli PS (1968) Deformation of olivine in stony meteorites. J Phys Res 73:5439–5461CrossRefGoogle Scholar
  6. Chen M (1992) Micromineralogy and shock effects in Yanzhuang chondrite (H6). Ph.D. thesis, Guangzhou Branch of the Institute of Geochemistry, Chinese Academy of Sciences, pp 1–95 (in Chinese with English abstract)Google Scholar
  7. Chen M, Xie XD (1993a) The shock effects of orthopyroxene in the heavily shocked meteorites. Chin Sci Bull 38:140–142 (in Chinese)CrossRefGoogle Scholar
  8. Chen M, Xie XD (1993b) The shock effects of olivine in the Yanzhuang chondrite. Acta Mineral Sinica 13:109–114 (in Chinese with English abstract)Google Scholar
  9. Chen M, Sharp TG, El Goresy A, Wopenka B, Xie XD (1996) The majorite-pyrope+ magnesiowustite assemblage: constrains on the history of shock veins in chondrites. Science 271:1570–1573CrossRefGoogle Scholar
  10. Christie JM, Ardell AJ (1976) Deformation structures in minerals natural shocked H chondrites (abstracts). Meteoritics 27:209Google Scholar
  11. Colemann LC (1977) Ringwoodite and majorite in the Catherwood meteorite. Can Mineral 15:97–101Google Scholar
  12. Dundon RW, Hafner SS (1971) Cation disorder in shocked orthopyroxene. Science 174:581–5834CrossRefGoogle Scholar
  13. Guyot F, Boyer H, Madon M, Velde B, Poirier JP (1986) Comparison of the Raman microprobe spectra of (Mg, Fe)2SiO4 and Mg2GeO4 with olivine and spinel structures. Phys Chem Miner 13:91–95CrossRefGoogle Scholar
  14. Heymann D (1967) On the origin of hypersthene chondrites: ages and shock effects of black chondrites. Icarus 6:189–221CrossRefGoogle Scholar
  15. Heymann D, Collucci TA (1988) Raman spectra of shocked minerals 1: olivine. Meteoritics 23:353–357CrossRefGoogle Scholar
  16. Jeanloz R, Ahrens TJ, Lally JS, Hord GL, Christie LM, Heuer AH (1977) Shock-produced olivine glass: first observation. Science 197:457–458CrossRefGoogle Scholar
  17. Mason B, Nelen J, White JS (1968) Olivine-garnet transformation in a meteorite. Science 160:66–67CrossRefGoogle Scholar
  18. McMillan P (1984a) Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. Am Miner 69:624–644Google Scholar
  19. McMillan P (1984b) A Raman spectroscopic study of glasses in the system CaO-MgO-SiO2. Am Miner 69:645–659Google Scholar
  20. McMillan P, Akaogi M (1987) Raman spectra of β-Mg2SiO4 (modified spinel) and γ-Mg2SiO4 (spinel). Am Miner 72:361–364Google Scholar
  21. McMillan P, Akaogi M, Ohtani E, Williams Q, Nieman R, Sato R (1989) Cation disorder in garnets along the Mg3Al2Si3O12-Mg4Si4O22 join: an infrared, Raman and NMR study. Phys Chem Miner 16:528–535CrossRefGoogle Scholar
  22. Mori H (1989) Deformation of minerals by shock compression. Jpn J Miner 19:153–158Google Scholar
  23. Piriou B, McMillan P (1983) The high-frequency vibrational spectra of vitreous and crystalline orthosilicates. Am Miner 68:426–443Google Scholar
  24. Pollack SS, DeCarli P (1969) Enstatite: disorder produced by a megabar shock event. Science 165:591–592CrossRefGoogle Scholar
  25. Price GD, Putnis A (1982) A spinel to β-phase transformation mechanism in (Mg, Fe)2SiO4. Nature 296:729–731CrossRefGoogle Scholar
  26. Price GD, Putnis A, Agrell SO (1979) Electron petrography of shock-produced veins in the Tenham chondrite. Contrib Miner Petrol 71:211–218CrossRefGoogle Scholar
  27. Putnis A, Price GD (1979) High-pressure (Mg, Fe)2SiO4 phase in the Tenham chondritic meteorite. Nature 280:217–218CrossRefGoogle Scholar
  28. Reimold WU, Stöffler D (1978) Experimental shock metamorphism of dunite. In: Lunar planetary conference, vol 9, pp 2805–2824Google Scholar
  29. Rubie DG, Brearley WF (1990) Mechanism of γ-β phase transformation of Mg2SiO4 at high temperature and pressure. Nature 348:628–631CrossRefGoogle Scholar
  30. Rubin AE (1985) Impact melt products of chondritic material. Rev Geophys 23:277–300CrossRefGoogle Scholar
  31. Smith BA, Goldstein JF (1977) The metallic microstructures and thermal histories of severely reheated chondrites. Geochim Cocmochim Acta 41:1061–1072CrossRefGoogle Scholar
  32. Stöffler D, Bischoff A, Bushward V, Rubin AI (1988) Shock effects in meteorites. In: Kerridge JE, Mathews MS (eds) Meteoritics and the early solar system. University of Arizona Press, Tucson, pp 165–202Google Scholar
  33. Sung CM, Burns RG (1978) Crustal structural features of the olivine-spinel transition. Phys Chem Miner 2:177–197CrossRefGoogle Scholar
  34. Taylor GJ, Heymann D (1971) Postshock thermal histories of reheated chondrites. J Geophys Res 76:1879–1893CrossRefGoogle Scholar
  35. Urey HC, Mayeda T (1959) The metallic particles of some chondrites. Geochim Cocmochim Acta 17:113–124CrossRefGoogle Scholar
  36. Wood JA (1967) Chondrites: their metallic minerals, thermal histories and parent planets. Icarus 6:1–49CrossRefGoogle Scholar
  37. Xie XD (1986) Mineral micro-deformation features induced by nuclear explosion and meteorite impact events. Collected works on geochemistry. Science Press, Beijing, pp 146–152 (in Chinese)Google Scholar
  38. Xie XD, Chen M (2016) Suizhou meteorite: mineralogy and shock metamorphism. Springer, Guangdong Science & Technology Press, Berlin, Heidelberg, Guangzhou, p 258CrossRefGoogle Scholar
  39. Xie XD, Sun ZY, Chen M (2011) The distinct morphological and petrological features of shock melt veins in the Suizhou L6 meteorite. Meteorit Planet Sci 46:459–469CrossRefGoogle Scholar
  40. Xu WB, Wang SC, Zhang SJ et al (1990) A preliminary study on the new falling Sixiangkou meteorite in China. In: The proceedings of the fourth colloquium on meteoritics and space chemistry in China (abstracts), Guiyang, p 160 (in Chinese)Google Scholar

Copyright information

© Guangdong Science & Technology Press Co., Ltd and Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations