Horocycle Flows on Surfaces with Infinite Genus

Geometric and Ergodic Aspects of Group Actions
  • Omri SarigEmail author
Part of the Infosys Science Foundation Series book series (ISFS)


We study the ergodic theory of horocycle flows on hyperbolic surfaces with infinite genus. In this case, the nontrivial ergodic invariant Radon measures are all infinite. We explain the relation between these measures and the positive eigenfunctions of the Laplacian on the surface. In the special case of \(\mathbb Z^d\)-covers of compact hyperbolic surfaces, we also describe some of their ergodic properties, paying special attention to equidistribution and to generalized laws of large numbers.



This set of notes constituted the basis for a series of lectures given in April 2015 as part of the program “Geometric and ergodic aspects of group actions,” at the Tata Institute for Fundamental Research, Mumbai. The author would like to thank the organizers of the program and the staff of TIFR for the kind hospitality. The author acknowledges the support of ISF grants 1149/18 and 199/14.


  1. 1.
    J. Aaronson: An introduction to infinite ergodic theory. Mathematical Surveys and Monographs, 50. American Mathematical Society, Providence, RI, 1997. xii+284 pp. ISBN: 0-8218-0494-4Google Scholar
  2. 2.
    J. Aaronson, M. Denker, and A.M. Fisher: Second order ergodic theorems for ergodic transformations of infinite measure spaces. Proc. Amer. Math. Soc. 114 (1992) no. 1, 115–127.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Aaronson, H. Nakada, O. Sarig, and R. Solomyak: Invariant measures and asymptotics for some skew products. Israel J. Math. 128 (2002), 93–134.MathSciNetCrossRefGoogle Scholar
  4. 4.
    J. Aaronson, O. Sarig, and R. Solomyak: Tail-invariant measures for some suspension semiflows. Discrete Contin. Dyn. Syst. 8 (2002), no. 3, 725–735.MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Aaronson and B. Weiss: On the asymptotics of a 1-parameter family of infinite measure preserving transformations. Bol. Soc. Brasil. Mat. (N.S.) 29 (1998), no. 1, 181–193.Google Scholar
  6. 6.
    M. Babillot: On the classification of invariant measures for horospherical foliations on nilpotent covers of negatively curved manifolds. In: Random walks and geometry (V.A. Kaimanovich, Ed.) de Gruyter, Berlin (2004), 319–335.Google Scholar
  7. 7.
    M. Babillot and F. Ledrappier: Lalley’s theorem on periodic orbits of hyperbolic flows. Ergodic Theory Dynam. Systems 18 (1998), no. 1, 17–39.MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Babillot and F. Ledrappier: Geodesic paths and horocycle flows on Abelian covers. Lie groups and ergodic theory (Mumbai, 1996), 1–32, Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res., Bombay, (1998).Google Scholar
  9. 9.
    M. Bachir Bekka: Ergodic theory and topological dynamics of group actions on homogeneous spaces, London Math. Soc. Lecture Notes Series 269, Cambridge University Press, 2013.Google Scholar
  10. 10.
    Philippe Bougerol and Laure Élie: Existence of positive harmonic functions on groups and on covering manifolds. Ann. Inst. H. Poincaré Probab. Statist. 31 (1995), no. 1, 59–80.MathSciNetzbMATHGoogle Scholar
  11. 11.
    M. Burger: Horocycle flow on geometrically finite surfaces. Duke Math. J. 61 (1990), no. 3, 779–803.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Gustave Choquet and Jacques Deny: Sur l’équation de convolution \(\mu =\mu \ast \sigma \). (French) C. R. Acad. Sci. Paris 250 1960 799–801.Google Scholar
  13. 13.
    J.-P. Conze and Y. Guivarc’h: Propriété de droite fixe et fonctions harmoniques positives. (French) Théorie du potentiel et analyse harmonique (Exposés des Journées de la Soc. Math. France, Inst. Recherche Math. Avancée, Strasbourg, 1973), pp. 126–132. Lecture Notes in Math., Vol. 404, Springer, Berlin, 1974.Google Scholar
  14. 14.
    Y. Coudene: Cocycles and stable foliations of Axiom A flows, Ergodic Th. & Dynam. Syst. 21 (2001), 767–774.MathSciNetzbMATHGoogle Scholar
  15. 15.
    F. Dal’bo: Remarques sur le spectre des longueurs d’une surface et comptages. Bol. Soc. Brasil. Mat. (N.S.) 30 (1999), no. 2, 1991.Google Scholar
  16. 16.
    S. G. Dani: Invariant measures of horospherical flows on noncompact homogeneous spaces. Invent. Math. 47 (1978), no. 2, 101–138.MathSciNetCrossRefGoogle Scholar
  17. 17.
    S. G. Dani and J. Smillie: Uniform distribution of horocycle orbits for Fuchsian groups. Duke Math. J. 51 (1984), 185–194.MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Feldman and C. C. Moore: Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324.MathSciNetCrossRefGoogle Scholar
  19. 19.
    A. Fisher: Convex-invariant means and a pathwise central limit theorem. Adv. in Math. 63 (1987), no. 3, 213–246.MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. M. Fisher: Integer Cantor sets and an order-two ergodic theorem. Ergodic Theory Dynam. Systems 13 (1993), no. 1, 45–64.MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Furstenberg: The unique ergodicity of the horocycle flow. Springer Lecture Notes 318 (1972), 95–115.Google Scholar
  22. 22.
    H. Furstenberg: Recurrence in ergodic theory and combinatorial number theory. M. B. Porter Lectures. Princeton University Press, Princeton, N.J., 1981. xi+203 pp.Google Scholar
  23. 23.
    Y. Guivarc’h: Sur la représentation intégrale des fonctions harmoniques et des fonctions propres positives dans un espace riemannien symétrique. Bull. Sci. Math. (2) 108 (1984), no. 4, 373–392.Google Scholar
  24. 24.
    Y. Guivarc’h and A. Raugi: Products of random matrices: convergence theorems. In Random matrices and their applications (Brunswick, Maine, 1984), 31–54, Contemp. Math., 50, Amer. Math. Soc., Providence, RI, (1986).Google Scholar
  25. 25.
    E. Hopf: Ergodentheorie, Ergeb. Mat. vol. 5, Springer, Berlin, 1937.Google Scholar
  26. 26.
    E. Hopf: Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. AMS 77 (1971), 863–877.MathSciNetCrossRefGoogle Scholar
  27. 27.
    J. H. Hubbard: Teichmüller Theory and applications to geometry, topology, and dynamics. Volume 1: Teichmüller theory. xx+459 pages. Matrix Edition (2006).Google Scholar
  28. 28.
    V. A. Kaimanovich: Ergodic properties of the horocycle flow and classification of Fuchsian groups. J. Dynam. Control Systems 6 (2000), no. 1, 21–56.MathSciNetCrossRefGoogle Scholar
  29. 29.
    F. I. Karpelevich: The geometry of geodesics and the eigenfunctions of the Laplacian on symmetric spaces. Trans. Moskov. Math. Soc. 14 48–185 (1965).zbMATHGoogle Scholar
  30. 30.
    S. Katok: Fuchsian groups. x+175 pages. The U. of Chicago Press (1992).Google Scholar
  31. 31.
    A. Katsuda and T. Sunada: Closed orbits in homology classes. Inst. Hautes Études Sci. Publ. Math. No. 71 (1990), 5–32.Google Scholar
  32. 32.
    S. Lalley: Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J., 55 (1989), 795–821.MathSciNetCrossRefGoogle Scholar
  33. 33.
    F. Ledrappier: Invariant measures for the stable foliation on negatively curved periodic manifolds, Ann. Inst. Fourier 58 number 1 (2008), 85–105.MathSciNetCrossRefGoogle Scholar
  34. 34.
    F. Ledrappier and O. Sarig: Unique ergodicity for non-uniquely ergodic horocycle flows. Discrete Contin. Dyn. Syst. 16 (2006), no. 2, 411–433.MathSciNetCrossRefGoogle Scholar
  35. 35.
    F. Ledrappier and O. Sarig: Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Israel J. Math. 160, 281–317 (2007).MathSciNetCrossRefGoogle Scholar
  36. 36.
    F. Ledrappier and O. Sarig: Fluctuations of ergodic sums for horocycle flows on\({\mathbb{Z}}^d\)-covers of finite volume surfaces. Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 247–325.Google Scholar
  37. 37.
    V. Lin and Y. Pinchover: Manifolds with group actions and elliptic operators. Mem. Amer. Math. Soc. 112 (1994), no. 540, vi+78 pp.Google Scholar
  38. 38.
    Terry Lyons and Dennis Sullivan: Function theory, random paths and covering spaces. J. Differential Geom. 19 (1984), no. 2, 299–323.MathSciNetCrossRefGoogle Scholar
  39. 39.
    G. Margulis: Positive harmonic functions on nilpotent groups. Dokl. Akad. Nauk SSSR 166 1054–1057 (Russian); translated as Soviet Math. Dokl. 7 1966 241–244.Google Scholar
  40. 40.
    S. J. Patterson: The limit set of Fuchsian group, Acta Math. 136 (1976), 241–273.MathSciNetCrossRefGoogle Scholar
  41. 41.
    M. Pollicott: \({\mathbb{Z}}^d\)-covers of horospheric foliations, Discrete Continuous Dynam. Syst. 6 (2000), 599–604.Google Scholar
  42. 42.
    M. Ratner: A central limit theorem for У-flows on three-dimensional manifolds. (Russian) Dokl. Akad. Nauk SSSR 186 (1969) 519–521.Google Scholar
  43. 43.
    M. Ratner: On Raghunathan’s measure conjecture. Ann. of Math. (2) 134 (1991), no. 3, 545–607.Google Scholar
  44. 44.
    M. Ratner: Raghunathan’s topological conjecture and distributions of unipotent flows. Duke Math. J. 63 (1991), no. 1, 235–280.MathSciNetCrossRefGoogle Scholar
  45. 45.
    A. Raugi: Mesures invariantes ergodiques pour des produits gauches. Bull. Soc. Math. France 135 (2007), no. 2, 247–258.MathSciNetCrossRefGoogle Scholar
  46. 46.
    M. Rees: Divergence type of some subgroups of finitely generated Fuchsian groups. Ergodic Theory Dynamical Systems 1 (1981), no. 2, 209–221.MathSciNetCrossRefGoogle Scholar
  47. 47.
    T. Roblin: Sur l’ergodicité rationnelle et les propriétés ergodiques du flot géodésique dans les variétés hyperboliques. Ergodic Theory Dynam. Systems 20 (2000), no. 6, 1785–1819.MathSciNetCrossRefGoogle Scholar
  48. 48.
    T. Roblin: Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. (N.S.) 95 (2003), vi+96 pp.Google Scholar
  49. 49.
    O. Sarig: Invariant measures for the horocycle flow on Abelian covers. Inv. Math. 157, 519–551 (2004).MathSciNetCrossRefGoogle Scholar
  50. 50.
    O. Sarig: The horocyclic flow and the Laplacian on hyperbolic surfaces of infinite genus. Geom. Funct. Anal. 19 (2010), no. 6, 1757–1812.MathSciNetCrossRefGoogle Scholar
  51. 51.
    O. Sarig and B. Schapira: The generic points for the horocycle flow on a class of hyperbolic surfaces with infinite genus. Int. Math. Res. Not. IMRN 2008, Art. ID rnn 086, 37 pp.Google Scholar
  52. 52.
    B. Schapira: Equidistribution of the horocycles of a geometrically finite surface. Int. Math. Res. Not. 40, 2447–2471 (2005).MathSciNetCrossRefGoogle Scholar
  53. 53.
    K. Schmidt: Cocycles on ergodic transformation groups. Macmillan Lectures in Mathematics, Vol. 1. Macmillan Company of India, Ltd., Delhi, 1977. 202 pp. (Available from the author’s homepage.)Google Scholar
  54. 54.
    C. Series: Geometrical methods of symbolic coding. In Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces Edited by T. Bedford, M. Keane, C. Series. Oxford Univ. Press (1991).Google Scholar
  55. 55.
    R. Solomyak: A short proof of the ergodicity of the Babillot-Ledrappier measures, Proc. AMS 129 (2001), 3589–3591.MathSciNetCrossRefGoogle Scholar
  56. 56.
    A. N. Starkov: Fuchsian groups from the dynamical viewpoint, J. Dynamics and Control Systems 1 (1995), 427–445.MathSciNetCrossRefGoogle Scholar
  57. 57.
    J. Stillwell: Geometry of surfaces. Universitext. Springer-Verlag, New York, 1992. xii+216 pp. ISBN: 0-387-97743-0 Google Scholar
  58. 58.
    D. Sullivan: The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math. No. 50 (1979), 171–202.Google Scholar
  59. 59.
    D. Sullivan: Related aspects of positivity in Riemannian geometry. J. Diff. Geom. 25 327–351 (1987).MathSciNetCrossRefGoogle Scholar
  60. 60.
    R. Zweimüller: Hopf’s ratio ergodic theorem by inducing. Colloq. Math. 101 (2004), no. 2, 289–292.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations