Advertisement

Lectures on Kleinian Groups

  • Mahan MjEmail author
Chapter
Part of the Infosys Science Foundation Series book series (ISFS)

Abstract

This is an introduction to the theory of Kleinian groups, with a focus on Kleinian surface groups: both geometrically finite and infinite.

2010 Mathematics Subject Classification

57M50 30F40 20H10 20F65 20F67 

Notes

Acknowledgements

We thank the anonymous referee for helpful comments.

References

  1. 1.
    I. Agol. Tameness of hyperbolic 3-manifolds. preprint, arXiv:math.GT/0405568, 2004.
  2. 2.
    Lars Ahlfors and Lipman Bers. Riemann’s mapping theorem for variable metrics. Ann. of Math. (2), 72:385–404, 1960.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. Anderson and B. Maskit. On the local connectivity of limit sets of Kleinian groups. Complex Variables Theory Appl. 31, pages 177–183, 1996.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Lipman Bers. Simultaneous uniformization. Bull. Amer. Math. Soc., 66:94–97, 1960.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lipman Bers. On boundaries of Teichmüller spaces and on Kleinian groups. I. Ann. of Math. (2), 91:570–600, 1970.CrossRefGoogle Scholar
  6. 6.
    M. Bestvina and M. Feighn. A Combination theorem for negatively curved groups. J. Diff. Geom., vol 35, pages 85–101, 1992.MathSciNetCrossRefGoogle Scholar
  7. 7.
    F. Bonahon. Bouts de varietes hyperboliques de dimension 3. Ann. Math. vol.124, pages 71–158, 1986.MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. F. Brock, R. D. Canary, and Y. N. Minsky. The Classification of Kleinian surface groups II: The Ending Lamination Conjecture. Ann. of Math. 176 (1), arXiv:math/0412006, pages 1–149, 2012.MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. D. Canary. Ends of hyperbolic 3 manifolds. J. Amer. Math. Soc., pages 1–35, 1993.Google Scholar
  10. 10.
    J. Cannon and W. P. Thurston. Group invariant Peano curves. preprint, Princeton, 1985.Google Scholar
  11. 11.
    J. Cannon and W. P. Thurston. Group invariant Peano curves. Geom. Topol. 11, pages 1315–1355, 2007.MathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Das and M. Mj. Semiconjugacies between relatively hyperbolic boundaries. Groups Geom. Dyn. 10, pages 733–752, 2016.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Evans. Deformation spaces of hyperbolic 3-manifolds: strong convergence and tameness. Ph.D. Thesis, Unversity of Michigan, 2000.Google Scholar
  14. 14.
    R. Evans. Weakly type-preserving sequences and strong convergence. Geometriae Dedicata, Volume 108, Number 1, pages 71–92, October, 2004.Google Scholar
  15. 15.
    D. Gabai and D. Calegari. Shrink-wrapping and the taming of hyperbolic 3-manifolds. preprint, arXiv:math.GT/0407161, 2004.
  16. 16.
  17. 17.
    Y. N. Minsky. On Rigidity, Limit sets, and end invariants of hyperbolic 3-manifolds. J. Amer. Math. Soc. vol.7, pages 539–588, 1994.MathSciNetzbMATHGoogle Scholar
  18. 18.
    Y. N. Minsky. The classification of punctured torus groups. Ann. of Math. 149, pages 559–626, 1999.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Y. N. Minsky. The Classification of Kleinian surface groups I: models and bounds. Ann. of Math. 171(1), arXiv:math.GT/0302208. pages 1–107, 2010.
  20. 20.
    M. Mitra. Cannon-Thurston maps for hyperbolic group extensions. Topology 37, pages 527–538, 1998.MathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Mitra. Cannon-Thurston maps for trees of hyperbolic metric spaces. Jour. Diff. Geom.48, pages 135–164, 1998.MathSciNetCrossRefGoogle Scholar
  22. 22.
    M. Mj. Cannon-Thurston maps and bounded geometry. Teichmuller theory and moduli problem, Ramanujan Math. Soc. Lect. Notes Ser., 10, Ramanujan Math. Soc., Mysore, pages 489–511, 2010.Google Scholar
  23. 23.
    M. Mj. Cannon-Thurston Maps, i-bounded geometry and a theorem of McMullen. Actes du séminaire Théorie spectrale et géométrie, Grenoble, vol 28, 2009–2010, arXiv:math.GT/0511104, pages 63–108, 2011.
  24. 24.
    M. Mj. Cannon-Thurston maps for surface groups. Ann. of Math., 179(1), pages 1–80, 2014.MathSciNetCrossRefGoogle Scholar
  25. 25.
    M. Mj. Ending Laminations and Cannon-Thurston Maps, with an appendix by S. Das and M. Mj. Geom. Funct. Anal. 24, pages 297–321, 2014.MathSciNetCrossRefGoogle Scholar
  26. 26.
    M. Mj. Cannon-Thurston Maps for Surface Groups: An exposition of Amalgamation Geometry and Split Geometry. Geometry, Topology, and Dynamics in Negative Curvature, London Mathematical Society Lecture Note Series volume 425, arXiv:math.GT/0512539, pages 221–271, 2016.
  27. 27.
    M. Mj. Motions of limit sets: A survey. Proceedings of Workshop on Grothendieck-Teichmuller theories, Chern Institute, Tianjin, July 2016, 2017.Google Scholar
  28. 28.
    M. Mj. Cannon-Thurston maps for Kleinian groups. Forum of Mathematics Pi 5, e1, 49 pp, 2017.Google Scholar
  29. 29.
    M. Mj. Cannon-Thurston maps. Proc. Int. Cong. of Math. Rio de Janeiro, Vol. 2, pages 903–936, 2018.Google Scholar
  30. 30.
    M. Mj. Cannon-Thurston maps in Kleinian groups and geometric group theory. to appear in Differential Geometry Survey volume, edited by Ian Agol and David Gabai, 2018.Google Scholar
  31. 31.
    M. Mj. Models of ends of hyperbolic 3-manifolds: A survey to appear in Vol 7 of Handbook of Teichmuller Theory, 2018.Google Scholar
  32. 32.
    M. Mj and K. Ohshika. Discontinuous motions of limit sets. preprint, arXiv:1704.00269, 2017.
  33. 33.
    R. L. Moore. Concerning upper semi-continuous collections of continua. Trans. Amer. Math. Soc. 27, pages 416–428, 1925.MathSciNetCrossRefGoogle Scholar
  34. 34.
    M. Mj and C. Series. Limits of limit sets I. Geom. Dedicata 167, pages 35–67, 2013.MathSciNetCrossRefGoogle Scholar
  35. 35.
    M. Mj and C. Series. Limits of limit sets II: geometrically infinite groups. Geom. Topol. 21, no. 2, pages 647–692, 2017.MathSciNetCrossRefGoogle Scholar
  36. 36.
    H. Namazi and J. Souto. Non-realizability and ending laminations: proof of the density conjecture. Acta Math. 209, no. 2, pages 323–395, 2012.MathSciNetCrossRefGoogle Scholar
  37. 37.
    K. Ohshika. Realising end invariants by limits of minimally parabolic, geometrically finite groups. Geom. Topol. 15, no. 2, pages 827–890, 2011.MathSciNetCrossRefGoogle Scholar
  38. 38.
    W. P. Thurston. The Geometry and Topology of 3-Manifolds. Princeton University Notes, 1980.Google Scholar
  39. 39.
    W. P. Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc., pages 357–382, 1982.Google Scholar
  40. 40.
    W. P. Thurston. Hyperbolic structures on 3-manifolds I: Deformations of acylindrical manifolds. Annals of Math.124, pages 203–246, 1986.Google Scholar
  41. 41.
    W. P. Thurston. Hyperbolic structures on 3-manifolds II: Surface Groups and 3-Manifolds which Fiber over the Circle. preprint, arXiv:math.GT/9801045, 1986.
  42. 42.
    W. P. Thurston. Hyperbolic structures on 3-manifolds III: Deformations of 3-manifolds with incompressible boundary. preprint, 1986.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations