Skip to main content

Types of Water Pollutants: Conventional and Emerging

  • Chapter
  • First Online:
Sensors in Water Pollutants Monitoring: Role of Material

Part of the book series: Advanced Functional Materials and Sensors ((AFMS))

Abstract

Among all natural resources water is the most valuable resource existing on this planet. In present scenario, around the globe more than 0.78 billion people do not have access to safe and potable water which ultimately deteriorating their health. It is the right of every individual to have contamination free water but due to rampant urbanization, industrialization and uncontrolled population growth the pressure has been increased on existing available water resources (surface/ground water both) which leads to shrinkage of quantity and degradation of its quality. Various types of pollutants (organic and inorganic) released from different sources into the environment are increasing day by day. Conventional water pollutants include F−, NO3−, and trace heavy metals (Pb, Cd, Cr, Ni, Zn, As, Hg, etc.), while emerging water pollutants include steroids and hormones, endocrine disrupting compounds (EDCs), pharmaceuticals & personal care products, artificial sweetener, surfactants, etc. The existence of these cocktail of pollutants in the water resources is more dangerous, which could lead to undesirable synergistic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abernathy, C. O., Thomas, D. J., & Calderon, R. L. (2003). Health effects and risk assessment of arsenic. The Journal of Nutrition, 133(5), 1536S–1538S.

    Google Scholar 

  2. Ahamad, A., Madhav, S., Singh, P., Pandey, J., & Khan, A. H. (2018). Assessment of groundwater quality with special emphasis on nitrate contamination in parts of Varanasi City, Uttar Pradesh, India. Applied Water Science, 8(4), 115.

    Google Scholar 

  3. Ahamad, A., Raju, N. J., Madhav, S., Gossel, W., & Wycisk, P. (2018). Impact of non-engineered Bhalswa landfill on groundwater from quaternary alluvium in Yamuna flood plain and potential human health risk, New Delhi, India. Quaternary International, 507, 352–369.

    Google Scholar 

  4. Ayoob, S., & Gupta, A. K. (2006). Fluoride in drinking water: A review on the status and stress effects. Critical Reviews in Environmental Science and Technology, 36(6), 433–487.

    Google Scholar 

  5. Azizullah, A., Khattak, M. N. K., Richter, P., & Häder, D. P. (2011). Water pollution in Pakistan and its impact on public health—A review. Environment International, 37(2), 479–497.

    Google Scholar 

  6. Beckman, L. E., Van Landeghem, G. F., Sikstrom, C., Wahlin, A., Markevarn, B., Hallmans, G. … Beckman, L. (1999). Interaction between haemochromatosis and transferrin receptor genes in different neoplastic disorders. Carcinogenesis, 20(7), 1231–1233.

    Google Scholar 

  7. Bell, M. C., & Ludwig, T. G. (1970). The supply of fluoride to man: Ingestion from water, fluorides and human health, WHO Monograph series 59. Geneva: World Health Organization.

    Google Scholar 

  8. Bellinger, D. C. (2005). Teratogen update: Lead and pregnancy. Birth Defects Research, Part A: Clinical and Molecular Teratology, 73(6), 409–420.

    Google Scholar 

  9. Berg, D., Gerlach, M., Youdim, M. B. H., Double, K. L., Zecca, L., Riederer, P., et al. (2001). Brain iron pathways and their relevance to Parkinson’s disease. Journal of Neurochemistry, 79(2), 225–236.

    Google Scholar 

  10. Bockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., & Gaillard, G. (2009). Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development, 29, 223–235.

    Google Scholar 

  11. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40(12), 1335–1351.

    Google Scholar 

  12. Bolong, N., Ismail, A. F., Salim, M. R., & Matsuura, T. (2009).A review of the effects of emerging contaminants in wastewater and options for their removal? Desalination, 239(1–3), 229–246.

    Google Scholar 

  13. Boyle, D. R. (1992). Effects of base exchange softening on fluoride uptake in ground waters of the Moncton Sub-basin, New Brunkswick, Canada. Water–Rock Interaction, 771–774.

    Google Scholar 

  14. Brooks, B. W., Huggett, D. B., & Boxall, A. B. (2009). Pharmaceuticals and personal care products: Research needs for the next decade. Environmental Toxicology and Chemistry, 28, 2469–2472.

    Google Scholar 

  15. Bulusu, K. R., & Pathak, B. N. (1980). Discussion on water defluoridation with activated alumina. Journal of the Environmental Engineering Division, 106(2), 466–469.

    Google Scholar 

  16. Burnette, L. W. (1966). Miscellaneous nonionic surfactants. Non-ionic surfactant. Surfactant Science Series, 1, 403–410.

    Google Scholar 

  17. Caussy, E., & World Health Organization. (2005). A field guide for detection, management and surveillance of Arsenicosis cases. World Health Organization.

    Google Scholar 

  18. Clarke, B. O., & Smith, S. R. (2011). Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids. Environment International, 37(1), 226–247.

    Google Scholar 

  19. Cosgrove, W. J., & Rijsberman, F. R. (2000). World water vision: Making water everybody’s business. London: WorldWaterCounc.

    Google Scholar 

  20. Crossgrove, J., & Zheng, W. (2004). Manganese toxicity upon overexposure. NMR in Biomedicine: An International Journal Devoted to the Development and Application of Magnetic Resonance In Vivo, 17(8), 544–553.

    Google Scholar 

  21. Cserhati, T. (1995). Alkyl ethoxylated and alkylphenol ethoxylated nonionic surfactants: Interaction with bioactive compounds and biological effects. Environmental Health Perspectives, 103(4), 358–364.

    Google Scholar 

  22. Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., & Yu, G. (2015). Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere, 119, 1033–1039.

    Google Scholar 

  23. Datta, P. S., Deb, D. L., & Tyagi, S. K. (1996). Stable isotope (18O) investigations on the processes controlling fluoride contamination of groundwater. Journal of Contaminant Hydrology, 24(1), 85–96.

    Google Scholar 

  24. Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environmental Health Perspectives, 107(Suppl 6), 907–938.

    Google Scholar 

  25. Deshmukh, A. N. (1995). Fluoride in environment: A review. Gondwana Geological Magazine, 9, 1–20.

    Google Scholar 

  26. Duda-Chodak, A., & Blaszczyk, U. (2008). The impact of nickel on human health. Journal of Elementology, 13(4), 685–693.

    Google Scholar 

  27. Eliopoulou, E., & Papanikolaou, A. (2007). Casuality analysis of large tankers. Journal of Marine Science and Technology, 12, 240–250.

    Google Scholar 

  28. Elisante, E., & Muzuka, A. N. (2017). Occurrence of nitrate in Tanzanian groundwater aquifers: A review. Applied Water Science, 7(1), 71–87.

    Google Scholar 

  29. Ellervik, C., Mandrup-Poulsen, T., Nordestgaard, B. G., Larsen, L. E., Appleyard, M., Frandsen, M. … Birgens, H. (2001). Prevalence of hereditary haemochromatosis in late-onset type 1 diabetes mellitus: A retrospective study. The Lancet, 358(9291), 1405–1409.

    Google Scholar 

  30. Emsley, J. (2003). Book review: Nature’s building blocks: An AZ guide to the elements/Oxford University Press, New York, 538 pp., 2002, ISBN 0-198-50341-5. Astronomy, 31(2), 87–88.

    Google Scholar 

  31. Farré, M., Pérez, S., Gajda-Schrantz, K., Osorio, V., Kantiani, L., Ginebreda, A., et al. (2010). First determination of C60 and C70 fullerenes and N-methylfulleropyrrolidine C60 on the suspended material of wastewater effluents by liquid chromatography hybrid quadrupole linear ion trap tandem mass spectrometry. Journal of Hydrology, 383(1–2), 44–51.

    Google Scholar 

  32. Fatoki, O. S., & Awofolu, R. (2003). Levels of Cd, Hg and Zn in some surface waters from the Eastern Cape Province, South Africa. Water SA, 29(4), 375–380.

    Google Scholar 

  33. Fatta-Kassinos, D., Meric, S., & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Analytical and Bioanalytical Chemistry, 399(1), 251–275.

    Google Scholar 

  34. Foster, M. D. (1964). Water content of micas and chlorites (No. 474-F).

    Google Scholar 

  35. Fromme, H., Kuchler, T., Otto, T., Pilz, K., Muller, J., & Wenzel, A. (2002). Occurrence of phthalates and bisphenol A and F in the environment. Water Research, 36, 1429.

    Google Scholar 

  36. Gatseva, P. D., & Argirova, M. D. (2008). High-nitrate levels in drinking water may be a risk factor for thyroid dysfunction in children and pregnant women living in rural Bulgarian areas. International Journal of Hygiene and Environmental Health, 211, 555–559.

    Google Scholar 

  37. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M. … Ritsema, C. J. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65.

    Google Scholar 

  38. Geissen, V., Ramos, F. Q., Bastidas-Bastidas, P. D. J., Díaz-González, G., Bello-Mendoza, R., Huerta-Lwanga, E., et al. (2010). Soil and water pollution in a banana production region in tropical Mexico. Bulletin of Environmental Contamination and Toxicology, 85(4), 407–413.

    Google Scholar 

  39. Gillberg, M. (1964). Halogens and hydroxyl contents of micas and amphiboles in Swedish granitic rocks. GeochimicaetCosmochimicaActa, 28(4), 495–516.

    Google Scholar 

  40. Gore, A. C., Crews, D., Doan, L. L., La Merrill, M., Patisaul, H., & Zota, A. (2014). Introduction to endocrine disrupting chemicals (EDCs). In A guide for public interest organizations and policy-makers. Endocrine Society: Washington, DC, USA.

    Google Scholar 

  41. Goyer, R. A., & Clarkson, T. W. (1996). Toxic effects of metals. In Klaassen, C. D. (Ed.), Casarett & Doull’s toxicology. The basic science of poisons (5th ed.). McGraw-Hill Health Professions Division.

    Google Scholar 

  42. Grindler, N. M., Vanderlinden, L., Karthikraj, R., Kannan, K., Teal, S., Polotsky, A. J. … Jansson, T. (2018). Exposure to phthalate, an endocrine disrupting chemical, alters the first trimester placental methylome and transcriptome in women. Scientific Reports, 8(1), 6086.

    Google Scholar 

  43. Guo, Y., & Kannan, K. (2013).A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environmental Science & Technology, 47(24), 14442–14449.

    Google Scholar 

  44. Haq, M. A., Khattak, R. A., Puno, H. K., Saif, M. S., & Memon, K. S. (2005). Surface and ground water contamination in NWFP and Sindh provinces with respect to trace elements. International Journal of Agriculture and Biology, 7(2), 214–217.

    Google Scholar 

  45. Hart, B. T. (1982). Uptake of trace metals by sediments and suspended particulates: A review. In Sediment/freshwater interaction (pp. 299–313). Dordrecht: Springer.

    Google Scholar 

  46. Hinrichsen, D., & Tacio, H. (2002). The coming freshwater crisis is already here. The linkages between population and water. Washington, DC: Woodrow Wilson International Center for Scholars, 1–26.

    Google Scholar 

  47. Houtman, C. J. (2010). Emerging contaminants in surface waters and their relevance for the production of drinking water in Europe. Journal of Integrative Environmental Sciences, 7(4), 271–295. https://www.freedrinkingwater.com/water-contamination/selenium-contaminants-removal-water.htm.

  48. Ilyas, A., & Sarwar, T. (2003). Study of trace elements in drinking water in the vicinity of Palosi drain, Peshawar. Pakistan Journal of Biological Sciences, 6, 86–91.

    Google Scholar 

  49. Inoue, N., & Makita, Y. (1996) In: Chang, L. W. (ed.), Neurological aspects in human exposures to manganese. Toxicology of metals (pp. 415–421). Boca Raton, FL: CRC Press.

    Google Scholar 

  50. Ivankovic, T., & Hrenovic, J. (2010). Surfactants in the environment. Archives of Industrial Hygiene and Toxicology, 61(1), 95–110.

    Google Scholar 

  51. Kosma, C. I., Lambropoulou, D. A., & Albanis, T. A. (2010). Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials, 179(1–3), 804–817.

    Google Scholar 

  52. Leung, H. W., Minh, T. B., Murphy, M. B., Lam, J. C., So, M. K., Martin, M. … Richardson, B. J. (2012). Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environment International, 42, 1–9.

    Google Scholar 

  53. Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. (2015). Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. Journal of Hazardous Materials, 300, 29–38.

    Google Scholar 

  54. Liu, J. L., & Wong, M. H. (2013). Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International, 59, 208–224.

    Google Scholar 

  55. Madhav, S., Ahamad, A., Kumar, A., Kushawaha, J., Singh, P., & Mishra, P. K. (2018a). Geochemical assessment of groundwater quality for its suitability for drinking and irrigation purpose in rural areas of Sant Ravidas Nagar (Bhadohi), Uttar Pradesh. Geology, Ecology, and Landscapes, 2(2), 127–136.

    Google Scholar 

  56. Madhav, S., Ahamad, A., Singh, P., & Mishra, P. K. (2018b). A review of textile industry: Wet processing, environmental impacts, and effluent treatment methods. Environmental Quality Management, 27(3), 31–41.

    Google Scholar 

  57. Martín, J., del Mar Orta, M., Medina-Carrasco, S., Santos, J. L., Aparicio, I., & Alonso, E. (2018). Removal of priority and emerging pollutants from aqueous media by adsorption onto synthetic organo-funtionalized high-charge swelling micas. Environmental Research, 164, 488–494.

    Google Scholar 

  58. McGregor, D. B., Baan, R. A., Partensky, C., Rice, J. M., & Wilbourn, J. D. (2000). Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodies-a report of an IARC Monographs Programme Meeting. European Journal of Cancer, 36(3), 307–313.

    Google Scholar 

  59. Meenakshi, S., Maheswari, R. C. (2006). Fluoride in drinking water and its removal. Journal of Hazardous Materials B, 137, 456–463.

    Google Scholar 

  60. Milman, N., Pedersen, P. A., á Steig, T., Byg, K. E., Graudal, N., & Fenger, K. (2001). Clinically overt hereditary hemochromatosis in Denmark 1948–1985: Epidemiology, factors of significance for long-term survival, and causes of death in 179 patients. Annals of Hematology, 80(12), 737–744.

    Google Scholar 

  61. Mohan, D., Pittman Jr, C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J. … Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science, 310(1), 57–73.

    Google Scholar 

  62. Mompelat, S., Le Bot, B., & Thomas, O. (2009). Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35, 803–814.

    Google Scholar 

  63. Navarro-Alarcon, M., & Cabrera-Vique, C. (2008). Selenium in food and the human body: A review. Science of the Total Environment, 400, 115–141.

    Google Scholar 

  64. Novotny, V. (1995). Diffuse sources of pollution by toxic metals and impact on receiving waters. In Heavy metals (pp. 33–52). Berlin, Heidelberg: Springer.

    Google Scholar 

  65. Oliveira, T. S., Murphy, M., Mendola, N., Wong, V., Carlson, D., & Waring, L. (2015). Characterization of pharmaceuticals and personal care products in hospital effluent and waste water influent/effluent by direct-injection LC-MS-MS. Science of the Total Environment, 518, 459–478.

    Google Scholar 

  66. Orebiyi, E. O., Awomeso, J. A., Idowu, O. A., Martins, O., Oguntoke, O., & Taiwo, A. M. (2010). Assessment of pollution hazards of shallow well water in Abeokuta and environs, southwest, Nigeria. American Journal of Environmental Sciences, 6, 50–56.

    Google Scholar 

  67. PAK-EPA. (2005). State of Environment Report 2005. Pakistan Environmental Protection Agency (Pak-EPA). Govt. of Pakistan, Islamabad, Pakistan: Ministry of Environment.

    Google Scholar 

  68. Parkkila, S., Niemelä, O., Savolainen, E. R., & Koistinen, P. (2001). HFE mutations do not account for transfusional iron overload in patients with acute myeloid leukemia. Transfusion, 41(6), 828–831.

    Google Scholar 

  69. Patra, R. C., Dwivedi, S. K., Bhardwaj, B., & Swarup, D. (2000). Industrial fluorosis in cattle and buffalo around Udaipur, India. Science of the Total Environment, 253(1–3), 145–150.

    Google Scholar 

  70. Petrovic, M., & Barcelo, D. (2006). Liquid chromatography-mass spectrometry in the analysis of emerging environmental contaminants. Analytical and Bioanalytical Chemistry, 385, 422–424.

    Google Scholar 

  71. Petrovic, M., & BarcelĂł, D. (Eds.). (2007). Analysis, fate and removal of pharmaceuticals in the water cycle. Amsterdam: Elsevier.

    Google Scholar 

  72. Rahman, F., Langford, K. H., Scrimshaw, M. D., & Lester, J. N. (2001). Polybrominateddiphenyl ether (PBDE) flame retardants. Science of the Total Environment, 275, 1–17.

    Google Scholar 

  73. Rao, N. S. (1997). The occurrence and behaviour of fluoride in the groundwater of the Lower Vamsadhara River basin, India. Hydrological Sciences Journal, 42(6), 877–892.

    Google Scholar 

  74. Raviraja, A., Babu, G. N. V., Bijoor, A. R., Menezes, G., & Venkatesh, T. (2008). Lead toxicity in a family as a result of occupational exposure. Archives of Industrial Hygiene and Toxicology, 59, 127–133.

    Google Scholar 

  75. Reddy, A. G. S., Kumar, K. N., Rao, D. S., & Rao, S. S. (2009). Assessment of nitrate contamination due to groundwater pollution in north eastern part of Anantapur District, AP India. Environmental Monitoring and Assessment, 148(1–4), 463–476.

    Google Scholar 

  76. Reemtsma, T., & Jekel, M. (Eds.). (2006). Organic Pollutants in the water cycle. Weinheim: Wiley VCH.

    Google Scholar 

  77. Reynolds-Vargas, J., Fraile-Merino, J., & Hirata, R. (2006). Trends in nitrate concentrations and determination of its origin using stable isotopes (18O and 15N) in groundwater of the western Central Valley, Costa Rica. Ambio: A Journal of the Human Environment, 35, 229–236.

    Google Scholar 

  78. Richardson, S. D. (2009). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 81, 4645–4677.

    Google Scholar 

  79. Richardson, S. D. (2008). Environmental mass spectrometry: Emerging contaminants and current issues. Analytical Chemistry, 80(12), 4373–4402.

    Google Scholar 

  80. Riess, M. L., & Halm, J. K. (2007). Lead poisoning in an adult: lead mobilization by pregnancy? Journal of General Internal Medicine, 22(8), 1212–1215.

    Google Scholar 

  81. Rimkus, G. G. (1999). Polycyclic musk fragrances in the aquatic environment. Toxicology Letters, 111(1–2), 37–56.

    Google Scholar 

  82. Rodil, R., Quintana, J. B., Concha-Graña, E., López-Mahía, P., Muniategui-Lorenzo, S., & Prada-Rodríguez, D. (2012). Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere, 86(10), 1040–1049.

    Google Scholar 

  83. Rodil, R., Quintana, J. B., Concha-Graña, E., López-Mahía, P., Muniategui-Lorenzo, S., & Prada-Rodríguez, D. (2012). Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere, 86, 1040–1049.

    Google Scholar 

  84. Ruhí, A., Acuña, V., Barceló, D., Huerta, B., Mor, J. R., Rodríguez-Mozaz, S., et al. (2016). Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of the Total Environment, 540, 250–259.

    Google Scholar 

  85. Ruhoy, I. S., & Daughton, C. G. (2008). Beyond the medicine cabinet: An analysis of where and why medications accumulate. Environment International, 34, 1157–1169.

    Google Scholar 

  86. Santos, S., Ungureanu, G., Boaventura, R., & Botelho, C. (2015). Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Science of the Total Environment, 521, 246–260.

    Google Scholar 

  87. Scheurer, M., Brauch, H. J., & Lange, F. T. (2009). Analysis and occurrence of seven artificial sweeteners in German waste water and surface water and in soil aquifer treatment (SAT). Analytical and Bioanalytical Chemistry, 394, 1585–1594.

    Google Scholar 

  88. Schumock, G. T., Li, E. C., Suda, K. J., Matusiak, L. M., Hunkler, R. J., Vermeulen, L. C., et al. (2014). National trends in prescription drug expenditures and projections for 2014. American Journal of Health-System Pharmacy, 71(6), 482–499.

    Google Scholar 

  89. Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., Von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109–136.

    Google Scholar 

  90. SchwarzmanMR, Wilson M. P. (2009). New science for chemicals policy. Science, 326, 1065–1066.

    Google Scholar 

  91. Schweitzer, L., & Noblet, J. (2018). Water contamination and pollution. In Green chemistry (pp. 261–290). Elsevier.

    Google Scholar 

  92. Seilkop, S. K., & Oller, A. R. (2003). Respiratory cancer risks associated with low-level nickel exposure: An integrated assessment based on animal, epidemiological, and mechanistic data. Regulatory Toxicology and Pharmacology, 37(2), 173–190.

    Google Scholar 

  93. Shao, M., Tang, X. Y., Zhang, Y. H., & Li, W. J. (2006). City clusters in China: Air and surface water pollution. Frontiers in Ecology and the Environment, 4, 353–361.

    Google Scholar 

  94. Singh, S. K., Bajpai, M., & Tyagi, V. K. (2006). Amine oxides: A review. Journal of Oleo Science, 55(3), 99–119.

    Google Scholar 

  95. Snyder, S. A., Westerhoff, P., Yoon, Y., & Sedlak, D. L. (2003). Pharmaceuticals, personal care products and endocrine disruptors in water: Implications for the water industry. Environmental Engineering Science, 20(5), 449–469.

    Google Scholar 

  96. Sohoni, P., & Sumpter, J. (1998). Several environmental oestrogens are also anti-androgens. Journal of Endocrinology, 158, 327–339.

    Google Scholar 

  97. Sorg, T. J., & Logsdon, G. S. (1978). Treatment technology to meet the interim primary drinking water regulations for inorganics: Part 2. Journal of the American Water Works Association, 70(7), 379–393.

    Google Scholar 

  98. Spalding, R. F., & Exner, M. E. (1993). Occurrence of nitrate in groundwater. A review. Journal of Environmental Quality, 22, 392–402.

    Google Scholar 

  99. Staples, C. A., Dome, P. B., Klecka, G. M., Oblock, S. T., & Harris, L. R. (1998). A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 36, 2149–2173.

    Google Scholar 

  100. Suthar, S., Bishnoi, P., Singh, S., Mutiyar, P. K., Nema, A. K., & Patil, N. S. (2009). Nitrate contamination in groundwater of some rural areas of Rajasthan, India. Journal of Hazardous Materials, 171(1–3), 189–199.

    Google Scholar 

  101. Tanwar, S., Di Carro, M., Ianni, C., & Magi, E. (2014). Occurrence of PCPs in natural waters from Europe. In Personal care products in the aquatic environment (pp. 37–71). Cham: Springer.

    Google Scholar 

  102. Tas, J. W., Balk, F., Ford, R. A., & van de Plassche, E. J. (1997). Environmental risk assessment of musk ketone and musk xylene in the Netherlands in accordance with the EU-TGD. Chemosphere, 35, 2973–3002.

    Google Scholar 

  103. Taylor, K. G., & Konhauser, K. O. (2011). Iron in Earth surface systems: A major player in chemical and biological processes. Elements, 7(2), 83–88.

    Google Scholar 

  104. Teotia, S. P. S., Teotia, M., & Singh, R. K. (1981). Hydro-geochemical aspects of endemic skeletal fluorosis in India—An epidemiologic study. Fluoride, 14(2), 69–74.

    Google Scholar 

  105. Testa, S. M., Guertin, J., Jacobs, J. A., & Avakian, C. P. (2004). Sources of chromium contamination in soil and groundwater (pp. 143–164). CRC Press: Boca Raton, FL.

    Google Scholar 

  106. Tricker, A. R., & Preussmann, R. (1991). Carcinogenic N-nitrosamines in the diet: Occurrence, formation, mechanisms and carcinogenic potential. Mutation Research/Genetic Toxicology, 259(3–4), 277–289.

    Google Scholar 

  107. Turekian, K. K., & Wedepohl, K. H. (1961). Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175–192.

    Google Scholar 

  108. Underwood, E. (2012). Trace elements in human and animal nutrition. Elsevier.

    Google Scholar 

  109. United States Environmental Protection Agency (USEPA). (1997). Special report on environmental endocrine disruption: An effects assessment and analysis. Washington, DC: Office of Research and Development.

    Google Scholar 

  110. USEPA. (2004). Drinking water health advisory for manganese; 2004. United States Environmental Protection Agency, Health and Ecological Criteria Division, Washington, DC 20460.

    Google Scholar 

  111. Venkatesh, T. (2004). The effects of environmental lead on human health-a challenging scenario. Health Focus, 2, 8–16.

    Google Scholar 

  112. Vinogradov, A. P. (1962). Mean element contents of the main types of crustal igneous rocks. Geochemistry, 5, 641–664.

    Google Scholar 

  113. Walker, R. (1990). Nitrates, nitrites and N-nitroso compounds: A review of the occurrence in food and diet and the toxicological implications. Food Additives & Contaminants, 7(6), 717–768.

    Google Scholar 

  114. Weiss, L., & Wright, S. (2001). Mercury, on the road to zero: Recommended strategies to eliminate mercury releases from human activities in Oregon by 2020. Oregon Environmental Council.

    Google Scholar 

  115. WHO. (2007). Nitrate and nitrite in drinking water. Background document for development of World Health Organization Guidelines for drinking-water quality. WHO/SDE/WSH/07.01/16, Geneva, Switzerland.

    Google Scholar 

  116. WHO Expert Committee on Oral Health Status, & Fluoride Use. (1994). Fluorides and oral health: Report of the WHO expert committee on oral health status and fluoride use (Vol. 846). World Health Organization.

    Google Scholar 

  117. WHO. (2011). Guidelines for drinking-water quality (4th ed.). Geneva.

    Google Scholar 

  118. World Health Organization. (1984). Environmental health criteria 36: Fluorine and fluorides. Geneva: World Health Organization.

    Google Scholar 

  119. Xagoraraki, I., & Kuo, D. (2008). Water pollution: Emerging contaminants associated with drinking water.

    Google Scholar 

  120. Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303–320.

    Google Scholar 

  121. Ying, G. G. (2006). Fate, behavior and effects of surfactants and their degradation products in the environment. Environment International, 32(3), 417–431.

    Google Scholar 

  122. Ziylan, A., & Ince, N. H. (2011). The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: Treatability by conventional and non-conventional processes. Journal of Hazardous Materials, 187, 24–36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Ahamad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Š 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahamad, A., Madhav, S., Singh, A.K., Kumar, A., Singh, P. (2020). Types of Water Pollutants: Conventional and Emerging. In: Pooja, D., Kumar, P., Singh, P., Patil, S. (eds) Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-15-0671-0_3

Download citation

Publish with us

Policies and ethics