Advertisement

The Consensus Games for Consensus Economics Under the Framework of Blockchain in Fintech

  • Lan Di
  • Zhe Yang
  • George Xianzhi YuanEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1082)

Abstract

The goal of this paper is to introduce a new notion called “Consensus Game (CG)” with motivation from the mechanism design of blockchain economy under the consensus incentives from Bitcoin ecosystems in financial technology (Fintech), we then establish the general existence results for consensus equilibria of consensus games in terms of corresponding interpretation based on the viewpoint of Blockchain consensus in Fintech by applying the concept of hybrid solutions in game theory. As applications, our discussion in this paper for the illustration of some issues and problems on the stability of mining pool-games for miners by applying consensus games shows that the concept of consensus equilibria could be used as a fundamental tool for the study of consensus economics under the framework of Blockchain economy in Fintech.

Keywords

Hybrid solutions Consensus equilibrium Consensus game Nakamoto consensus Bitcoin ecosystem Blockchain Protocol Blockchain economy Stability Longest chain rules (LCR) Chain Fork Nonordered preferences Mining economics Minier dilemma Multi-pools game Fintech 

References

  1. 1.
    Askoura, Y.: The weak-core of a game in normal form with a continuum of players. J. Math. Econ. 47(1), 43–47 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Askoura, Y., Sbihi, M., Tikobaini, H.: The exante \(\alpha -\)core for normal form games with uncertainty. J. Math. Econ. 49(2), 157–162 (2013)zbMATHGoogle Scholar
  3. 3.
    Askoura, Y.: An interim core for normal form games and exchange economies with incomplete information. J. Math. Econ. 58, 38–45 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Askoura, Y.: On the core of normal form games with a continuum of players. Math. Soc. Sci. 89, 32–42 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Aumann, R.J.: The core of a cooperative game without sidepayments. Trans. Am. Math. Soc. 98, 539–552 (1961)zbMATHCrossRefGoogle Scholar
  6. 6.
    Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_11CrossRefGoogle Scholar
  7. 7.
    Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 34–65. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-78375-8_2CrossRefGoogle Scholar
  8. 8.
    Bahackm, L.: Theoretical Bitcoin Attacks with less than Half of the Computational Power. Technical Report abs/1312.7013, CoRR (2013)Google Scholar
  9. 9.
    Biais, B., Bisire, C., Bouvard, M., Casamatta, C.: The blockchain folk theorem. Rev. Financ. Stud. 32(5), 1662–1715 (2019)CrossRefGoogle Scholar
  10. 10.
    Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, A., Felten, E.: Research Perspectives and Challenges for Bitcoin and Cryptocurrencies. In: Proceedings of the 36th IEEE Symposium on Security and Privacy, San Jose, California, USA, May 18–20, 2015Google Scholar
  11. 11.
    Border, K.C.: A core existence theorem for games without ordered preferences. Econometrica 52(6), 1537–1542 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of Bitcoin without the block reward. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, ACM, pp. 154C67, Vienna, Austria, October 24–28, 2016Google Scholar
  13. 13.
    Chen, M., Wu, Q., Yang, B.: How valuable is FinTech innovation? Revi. Financ. Stud. 32(5), 2062–2106 (2019)CrossRefGoogle Scholar
  14. 14.
    Chiu, J., Koeppl, T.: Blockchain-based settlement for asset trading. Rev. Financ. Stud. 32(5), 1716–1753 (2019)CrossRefGoogle Scholar
  15. 15.
    Cong, L.W., He, Z.: Blockchain disruption and smart contracts. Rev. Financ. Stud. 32(5), 1754–1797 (2019)CrossRefGoogle Scholar
  16. 16.
    D’Acunto, F., Prabhala, N., Rossi, A.G.: The promises and pitfalls of Robo-Advising. Rev. Financ. Stud. 32(5), 1983–2020 (2019)CrossRefGoogle Scholar
  17. 17.
    Dai, J., Vasarhelyi, M.A.: Toward blockchain-based accounting and assurance. J. Inf. Syst. 31, 5–21 (2017)Google Scholar
  18. 18.
    Eyal, I.: The miners dilemma. In: Proceedings of the 36th IEEE Symposium on Security and Privacy, San Jose, California, USA, May 18–20, 2015Google Scholar
  19. 19.
    Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 436–454. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45472-5_28CrossRefGoogle Scholar
  20. 20.
    Florenzano, M.: On the nonemptiness of the core of a coalitional production economy without ordered preferences. J. Math. Anal. Appl. 141, 484–490 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Foley, S., Karlsen, J.R., Putnins, T.: Sex, Drugs, and Bitcoin: how much illegal activity is financed through Cryptocurrencies? Rev. Financ. Stud. 32(5), 1798–1853 (2019)CrossRefGoogle Scholar
  22. 22.
    Fuster, A., Plosser, M., Schnabl, P., Vickery, J.: The role of technology in mortgage lending. Rev. Financ. Stud. 32(5), 1854–1899 (2019)CrossRefGoogle Scholar
  23. 23.
    Garay, J.A., Katz, J., Tackmann, B., Zikas, V.: How fair is your protocol? A utility-based approach to protocol optimality. In: Georgiou, G., Spirakis, P.G. (eds.) The 34th ACM PODC, ACM. pp. 281–290, July 2015Google Scholar
  24. 24.
    Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin Backbone Protocol: Analysis and Applications. Cryptology ePrint Archive, Report 2014/765 (2014)Google Scholar
  25. 25.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_10CrossRefGoogle Scholar
  26. 26.
    Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-63688-7_10CrossRefGoogle Scholar
  27. 27.
    Goldstein, I., Jiang, W., Karolyi, G.: To FinTech and beyond. Rev. Financ. Stud. 32(5), 1647–1661 (2019)CrossRefGoogle Scholar
  28. 28.
    Ichiishi, T.: A social coalitional equilibrium existence lemma. Econometrica 49, 369–377 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kajii, A.: A generalization of Scarf’s theorem: an \(\alpha -\)core existence theorem without transitivity or completeness. J. Econ. Theory 56, 194–205 (1992)zbMATHGoogle Scholar
  30. 30.
    Kiayias, A., Koutsoupias, E, Kyropoulou, M, Tselekounis, Y.: Blockchain mining games. In: 2016 ACM Conference on Economics and Computation, Maastricht, The Netherlands, 24–28 July 2016Google Scholar
  31. 31.
    Kroll, J., Davey, I., Felten, E.: The economics of Bitcoin mining, or Bitcoin in the presence of adversaries. In: Proceedings of The Twelfth Workshop on the Economics of Information Security (WEIS 2013), Georgetown University, Washington DC, USA, 11–12 June 2013Google Scholar
  32. 32.
    Lefebvre, I.: An alternative proof of the nonemptiness of the private core. Econ. Theor. 18(2), 275–291 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Martins-da-Rocha, V.F., Yannelis, N.: Nonemptiness of the alpha core. Working paper. Manchester School of Social Sciences, University of Manchester (2011)Google Scholar
  34. 34.
    Miller, A.: Feather-forks: enforcing a blacklist with sub-\(50\%\) hash power. bitcointalk.org, October 2013Google Scholar
  35. 35.
    Miller, A., LaViola Jr., J.J.: Anonymous byzantine consensus from moderately-hard puzzles: a model for Bitcoin (2014)Google Scholar
  36. 36.
    Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf
  37. 37.
    Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction Hardcover. Princeton University Press, Princeton (2016)zbMATHGoogle Scholar
  38. 38.
    Noguchi, M.: Cooperative equilibria of finite games with incomplete information. J. Math. Econ. 55, 4–10 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Noguchi, M.: Alpha cores of games with nonatomic asymmetric information. J. Math. Econ. 75, 1–12 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Nyumbayire, C.: The Nakamoto Consensus. https://www.interlogica.it/en/insight-en/nakamoto-consensus. Insight, Interlogica, February 2017
  41. 41.
    Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56614-6_22zbMATHCrossRefGoogle Scholar
  42. 42.
    Rosenfeld, M.: Analysis of Bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980 (2011)
  43. 43.
    Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in Bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54970-4_30CrossRefGoogle Scholar
  44. 44.
    Scarf, H.E.: On the existence of a cooperative solution for a general class of n-person games. J. Econ. Theor. 3, 169–181 (1971)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Shafer, W., Sonnenschein, H.: Equilibrium in abstract economies without ordered preferences. J. Math. Econ. 2, 345–348 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Tang, H.: Peer-to-Peer lenders versus banks: substitutes or complements? Rev. Financ. Stud. 32(5), 1900–1938 (2019)CrossRefGoogle Scholar
  47. 47.
    Tsabary, I., Eyal, I.: The gap game. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS 18) (2018)Google Scholar
  48. 48.
    Uyanik, M.: On the nonemptiness of the \(\alpha -\)core of discontinuous games: transferable and nontransferable utilities. J. Econ. Theor. 158, 213–231 (2015)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Vallée, B., Zeng, Y.: Marketplace lending: a new banking paradigm? Rev. Financ. Stud. 32(5), 1939–1982 (2019)CrossRefGoogle Scholar
  50. 50.
    Weber, S.: Some results on the weak core of a non-side-payment game with infinitely many players. J. Math. Econ. 8, 101–111 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Yannelis, N.C., Prabhakar, N.D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econ. 12, 233–245 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Yang, Z.: Some infinite-player generalizations of Scarf’s theorem: finite-coalition \(\alpha -\)cores and weak \(\alpha -\)cores. J. Math. Econ. 73, 81–85 (2017)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Yang, Z.: Some generalizations of Kajii’s theorem to games with infinitely many players. J. Math. Econ. 76, 131–135 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Yang, Z., Yuan, X.Z.: Some generalizations of Zhao’s theorem: bybrid solutions and weak hybrid solutions for games with nonordered preferences. J. Math. Econ. 84, 94–100 (2019)CrossRefGoogle Scholar
  55. 55.
    Yuan, X.Z.: The study of equilibria for abstract economies in topological vector spaces-a unified approach. Nonlinear Anal. 37, 409–430 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Zappala, J., Alechina, N., Logan, B.: Consensus games. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pp. 1309–1310 (2012)Google Scholar
  57. 57.
    Zhao, J.: The hybrid solutions of an \(N\)-person game. Games Econ. Behav. 4, 145–160 (1992)MathSciNetzbMATHGoogle Scholar
  58. 58.
    Yuan, X.Z, Di, L., Zeng, T.: The Existence of consensus games for data trading under the framework of Internet of Things (IoT) with blockchain ecosystems. Working Paper. School of FinTech, Shanghai Lixin University of Accounting and Finance (2019)Google Scholar
  59. 59.
    Zhu, C.: Big data as a governance mechanism. Rev. Financ. Stud. 32(5), 2021–2061 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Digital MediaJiangnan UniversityWuxiChina
  2. 2.School of EconomicsShanghai University of Finance and EconomicsShanghaiChina
  3. 3.Business SchoolChenngdu UniversityChengduChina
  4. 4.School of Financial TechnologyShanghai Lixin University of Accounting and FinanceShanghaiChina
  5. 5.Center for Financial EngineeringSoochow UniversitySuzhouChina
  6. 6.Business SchoolSun Yat-Sen UniversityGuangzhouChina
  7. 7.BBD Technology Co., Ltd. (BBD)ChengduChina

Personalised recommendations