Skip to main content

An Integrated Energy-Efficient Scheduling and Train Control Model with Regenerative Braking for Metro System

  • Conference paper
  • First Online:
Green, Smart and Connected Transportation Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 617))

  • 1272 Accesses

Abstract

Rising energy cost and environmental awareness make energy-efficient operation a key issue for metro management. The speed profile and timetable optimization are two significant ways to reduce total energy consumption for metro systems. This paper proposes an integrated speed profile and timetable optimization model to reduce the net energy consumption while incorporating with complex track conditions like undulate gradients, curves and tunnels. The net energy consumption is minimized by force coefficients and coast control for single train movement and accelerating and braking synchronization for multiple trains. An efficient hybrid particle swarm method based on the particle swarm optimization and genetic algorithm is designed to obtain a satisfactory solution. Finally, numerical case studies based on one metro line in Beijing are conducted to validate the energy-efficient performance of integrated model and the results show that the integrated model can achieve a better tradeoff between traction energy consumption and reused braking energy on comparison with individual speed profile and timetable optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Douglas H, Roberts C, Hillmansen S et al (2015) An assessment of available measures to reduce traction energy use in railway networks. Energy Convers Manag 106(12):1149–1165

    Article  Google Scholar 

  2. Scheepmaker GM, Goverde RMP, Kroon LG (2017) Review of energy-efficient train control and timetabling. Eur J Oper Res 257(2):355–376

    Article  MathSciNet  Google Scholar 

  3. Howlett P (1990) An optimal strategy for the control of a train. Anziam J 31(4):454–471

    MathSciNet  MATH  Google Scholar 

  4. Khmelnitsky E (2000) On an optimal control problem of train operation. Autom Control IEEE Trans 45(7):1257–1266

    Article  MathSciNet  Google Scholar 

  5. Liu R, Golovitcher IM (2003) Energy-efficient operation of rail vehicles. Transp Res Part A 37(10):917–932

    Google Scholar 

  6. Albrecht A, Howlett P, Pudney P et al (2016) The key principles of optimal train control—Part 1: formulation of the model, strategies of optimal type, evolutionary lines, location of optimal switching points. Transp Res Part B Methodol 94(2):482–508

    Article  Google Scholar 

  7. Albrecht A, Howlett P, Pudney P et al (2016) The key principles of optimal train control—part 2: existence of an optimal strategy, the local energy minimization principle, uniqueness, computational techniques. Transp Res Part B Methodol 94(2):509–538

    Article  Google Scholar 

  8. Lu S, Hillmansen S, Ho TK et al (2013) Single-Train trajectory optimization. IEEE Trans Intell Transp Syst 14(2):743–750

    Article  Google Scholar 

  9. Zhao N, Roberts C, Hillmansen S et al (2015) A multiple train trajectory optimization to minimize energy consumption and delay. IEEE Trans Intell Transp Syst 16(5):2363–2372

    Article  Google Scholar 

  10. Chang CS, Sim SS (1997) Optimising train movements through coast control using genetic algorithms. Electric Power Appl IEE Proc 144(1):65–73

    Article  Google Scholar 

  11. Wong KK, Ho TK (2004) Dynamic coast control of train movement with genetic algorithm. Int J Syst Sci 35(13–14):835–846

    Article  Google Scholar 

  12. Ke BR, Chen MC, Lin CL (2009) Block-layout design using MAX–MIN ant system for saving energy on mass rapid transit systems. IEEE Trans Intell Transp Syst 10(2):226–235

    Article  Google Scholar 

  13. Yang X, Li X, Ning B et al (2015) A survey on energy-efficient train operation for urban rail transit. IEEE Trans Intell Transp Syst 17(1):2–13

    Article  Google Scholar 

  14. Yang X, Li X, Gao Z et al (2013) A cooperative scheduling model for timetable optimization in subway systems. IEEE Trans Intell Transp Syst 14(1):438–447

    Article  Google Scholar 

  15. Pena-Alcaraz M, Fernandez A, Cucala AP et al (2011) Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy. Proc Inst Mech Eng Part F J Rail & Rapid Transit 226(4):397–408

    Article  Google Scholar 

  16. Li X, Hong KL (2014) An energy-efficient scheduling and speed control approach for metro rail operations. Transp Res Part B Methodol 64(4):73–89

    Article  Google Scholar 

  17. Yang X, Chen A, Li X et al (2015) An energy-efficient scheduling approach to improve the utilization of regenerative energy for metro systems. Transp Res Part C Emerg Technol 57:13–29

    Article  Google Scholar 

  18. Ye H, Liu R (2016) A multiphase optimal control method for multi-train control and scheduling on railway lines. Transp Res Part B Methodol 93:377–393

    Article  Google Scholar 

  19. Zhao N, Roberts C, Hillmansen S et al (2017) An integrated metro operation optimization to minimize energy consumption ☆. Transp Res Part C Emerg Technol 75:168–182

    Article  Google Scholar 

  20. Chevrier R, Pellegrini P, Rodriguez J (2013) Energy saving in railway timetabling: a bi-objective evolutionary approach for computing alternative running times. Transp Res Part C Emerg Technol 37(3):20–41

    Article  Google Scholar 

  21. Ding Y, Liu H, Bai Y et al (2011) A two-level optimization model and algorithm for energy-efficient urban train operation. J Transp Syst Eng Inf Technol 11(1):96–101

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (71571015, 71621001) for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaokuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ran, X., Chen, S., Chen, L. (2020). An Integrated Energy-Efficient Scheduling and Train Control Model with Regenerative Braking for Metro System. In: Wang, W., Baumann, M., Jiang, X. (eds) Green, Smart and Connected Transportation Systems. Lecture Notes in Electrical Engineering, vol 617. Springer, Singapore. https://doi.org/10.1007/978-981-15-0644-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0644-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0643-7

  • Online ISBN: 978-981-15-0644-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics