Potential Use of Bitcoin in B2C E-commerce

  • Ralf-Christian HärtingEmail author
  • Christopher Reichstein
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1041)


Bitcoin is a new digital currency with a very high visibility in media and research. Therefore, different aspects of potentials of Bitcoin are explored. In a prior investigation, several manifest indicators like transaction velocity have been identified as important influencing factors for the perceived use of digital currency. The focus of this paper is an empirical study, which examines factors of the potential use of Bitcoin in a B2C E-Commerce environment. More than 100 online merchants were interviewed in 2016. Based on a structural equation model (SEM), the results of the analysis show that the low transaction costs and acceptance are the main factors that influence the potential benefits of Bitcoin in B2C E-Commerce. The study also gives ideas for the relevance of further indicators.


Bitcoin Digital currency E-Commerce Empirical research 



We thank Tobias Rieger and Sebastian Schmid for supporting our research.


  1. 1.
    S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system (2008)Google Scholar
  2. 2.
    C. Reichstein, R. Härting, P. Neumaier, Understanding the potential value of digitization for business, in Agents and Multi-Agent Systems: Technologies and Applications, vol. 96 (Springer, Berlin, Heidelberg, 2018), pp. 287–298Google Scholar
  3. 3.
    S. Blakstad, R. Allen, New payments landscape, in FinTech Revolution. (Palgrave Macmillan, Cham 2018)CrossRefGoogle Scholar
  4. 4.
    E. Murphy, M. Murphy, M. Seitzinger,  Bitcoin: questions, answers, and analysis of legal issues. Congr. Res. Serv. (2015)Google Scholar
  5. 5.
    A. Rogojanu, L. Badea, The issue of competing currencies, case study-bitcoin. Theor. & Appl. Econ. 21(1), 103–114 (2014)Google Scholar
  6. 6.
    M. Van Alstyne, Why bitcoin has value. Commun. ACM 57(5), 30–32 (2014)CrossRefGoogle Scholar
  7. 7.
    R. Schmidt, M. Möhring, D. Glück, R. Haerting, B. Keller, C. Reichstein, Benefits from using Bitcoin: empirical evidence from a European country. Int. J. Serv. Sci., Manag., Eng., Technol. 7(4), 48–62 (2016)Google Scholar
  8. 8.
    T. Bamert, C. Decker, L. Elsen,  R. Wattenhofer, S. Welten, Have a snack, pay with Bitcoins, in Peer-to-Peer Computing (P2P), IEEE Thirteenth International Conference (IEEE, Trento, Italy, 2013), pp. 1–5Google Scholar
  9. 9.
    E. Androulaki, G.O. Karame, M. Roeschlin, T. Scherer, S. Capkun,  Evaluating user privacy in bitcoin, In, International Conference on Financial Cryptography and Data Security 2013. (Springer, Berlin, Heidelberg, 2013), pp. 34–51Google Scholar
  10. 10.
    M. Polasik, A.I. Piotrowska, T.P. Wisniewski, R. Kotkowski, G. Lightfoot, Price fluctuations and the use of Bitcoin: an empirical inquiry. Int. J. Electron. Commer. 20(1), 9–49 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Barber,X. Boyen, E. Shi, E. Uzun, Bitter to better—how to make bitcoin a better currency, in International Conference on Financial Cryptography and Data Security 2012, LNCS, volume 7397 (Springer, Berlin, Heidelberg, 2012), pp. 399–414Google Scholar
  12. 12.
    G.O. Karame, E. Androulaki, S. Capkun, Double-spending fast payments in bitcoin, in Proceedings of the 2012 ACM conference on Computer and communications security (ACM, New York, NY, USA, 2012), pp. 906–917Google Scholar
  13. 13.
    J. Brito, A. Castillo, Bitcoin: A primer for Policymakers. Mercatus Center at George Mason University. (Mercatus Center at George Mason University, 2013)Google Scholar
  14. 14.
    C. Decker, R. Wattenhofer, Information propagation in the bitcoin network, in Peer-to-Peer Computing (P2P), IEEE Thirteenth International Conference. (IEEE, Trento, Italy 2013), pp. 1–10Google Scholar
  15. 15.
    M. Andrychowicz, S. Dziembowski, D. Malinowski, L. Mazurek, Secure multiparty computations on bitcoin, in Security and Privacy (SP) (IEEE, San Jose, CA, USA, 2014), pp. 443–458Google Scholar
  16. 16.
    E.B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Zerocash: decentralized anonymous payments from bitcoin, in IEEE Symposium on Security and Privacy (SP) (IEEE, Berkeley, CA, USA, 2014), pp. 459–474Google Scholar
  17. 17.
    European Central Bank, Virtual Currency Schemes—A Further Analysis. (Frankfurt am Main, 2015)Google Scholar
  18. 18.
    W.J. Luther, Bitcoin and the future of digital payments. Indep. Rev. 20(3), 397–404 (2016)Google Scholar
  19. 19.
    D. Ron, A. Shamir, Quantitative analysis of the full bitcoin transaction graph, in International Conference on Financial Cryptography and Data Security (Springer, Berlin, Heidelberg, 2013)CrossRefGoogle Scholar
  20. 20.
    S. Meiklejohn,M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G.M. Voelker, S. Savage, A fistful of bitcoins: characterizing payments among men with no names, in Proceedings of the 2013 conference on Internet measurement conference (ACM, Barcelona, Spain, 2013), pp. 127–140Google Scholar
  21. 21.
    I. Miers, C. Garman, M. Green, A.D. Rubin, Zerocoin: anonymous distributed e-cash from bitcoin, in  Security and Privacy (SP). (IEEE Berkeley, CA, USA, 2013), pp. 397–411Google Scholar
  22. 22.
    E. McCullum, N. Paul, Bitcoin: Property or Currency? Tax Notes, 148(8) (2015)Google Scholar
  23. 23.
    J. Liu, R.J. Kauffman, D. Ma, Competition, cooperation, and regulation: Understanding the evolution of the mobile payments technology ecosystem. Electron. Commer. Res. Appl. 14(5), 372–391 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Böhme, N. Christin, B. Edelman, T. Moore, Bitcoin: Economics, technology, and governance. J. Econ. Perspect. 29(2), 213–238 (2015)CrossRefGoogle Scholar
  25. 25.
    P. Ciaian, M. Rajcaniova, D.A. Kancs, The economics of BitCoin price formation. Appl. Econ. 48(19), 1799–1815 (2016)CrossRefGoogle Scholar
  26. 26.
    LimeSurvey: The most popular Free Open Source Software survey tool on the web, Last accessed 20 Oct 2018
  27. 27.
    D. Hooper, J. Coughlan, M. Mullen, Structural equation modelling: guidelines for determining model fit. Electron. J. Bus. Res. Methods 6(1), 53–60 (2008)Google Scholar
  28. 28.
    J.F. Hair Jr., G.T.M. Hult, C. Ringle, M. Sarstedt, A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). (Sage Publications, Thousands Oaks, 2016)Google Scholar
  29. 29.
    C.M. Ringle, S. Wende, J.M. Becker. SmartPLS 3. Boenningstedt: SmartPLS GmbH (2015). Last accessed 10 Apr 2018
  30. 30.
    W.W. Chin, The partial least squares approach to structural equation modeling, in Modern methods for business research, vol. 295, no. 2 (Psychology Press, New York, 1998), pp. 295–336Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Ralf-Christian Härting
    • 1
    Email author
  • Christopher Reichstein
    • 1
  1. 1.Business ScienceAalen University of Applied SciencesAalenGermany

Personalised recommendations