Selective Autophagy Regulates Innate Immunity Through Cargo Receptor Network

  • Yaoxing Wu
  • Jun CuiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1209)


Autophagy, an evolutionarily conserved cargo degradation process, is responsible to remove superfluous and unwanted cytoplasmic materials and maintain cellular homeostasis. Autophagy can be highly selective and target specific cargoes by utilizing multiple cargo receptors, which bind both ubiquitinated cargoes and autophagosomes. Mounting evidence has revealed the deep involvement of selective autophagy in innate immunity upon pathogen invasion, including eliminating microbial pathogens, initiating the anti-microbe responses, and inhibiting excessive immune responses. Given the importance of selective autophagy in innate immunity, how cargo receptors deliver pathogens and intracellular host constitutes to autophagosomes during infection remains to be elucidated. In this review, we summarize current evidence for the regulation of innate immunity by selective autophagy and try to elucidate the mechanisms employed by cargo receptor network in mediating diverse innate immune responses.


Selective autophagy Cargo receptor Ubiquitination Immune response 



This work was supported by the National Natural Science Foundation of China (31870862, 31700760, and 31800751), Science and Technology Planning Project of Guangzhou, China (201804010385), and the Fundamental Research Funds for the Central Universities (18lgpy53).


  1. 1.
    Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB, Ray R (2008) Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 82:2241–2249PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P (2017) Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon beta. Biochem J 474:1163–1174PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, Salem S, Radovanovic I, Grant AV, Adimi P et al (2012) Mycobacterial disease and impaired IFN-gamma immunity in humans with inherited ISG15 deficiency. Science 337:1684–1688PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bulut Y, Faure E, Thomas L, Equils O, Arditi M (2001) Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J Immunol 167:987–994PubMedCrossRefGoogle Scholar
  5. 5.
    Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2:346–351PubMedCrossRefGoogle Scholar
  6. 6.
    Capelluto DG (2012) Tollip: a multitasking protein in innate immunity and protein trafficking. Microbes Infect 14:140–147PubMedCrossRefGoogle Scholar
  7. 7.
    Chen M, Meng Q, Qin Y, Liang P, Tan P, He L, Zhou Y, Chen Y, Huang J, Wang RF et al (2016) TRIM14 Inhibits cGAS degradation mediated by selective autophagy receptor p62 to promote innate immune responses. Mol Cell 64:105–119PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Choi Y, Bowman JW, Jung JU (2018) Autophagy during viral infection—a double-edged sword. Nat Rev MicrobiolGoogle Scholar
  9. 9.
    Choi YB, Shembade N, Parvatiyar K, Balachandran S, Harhaj EW (2017) TAX1BP1 restrains virus-induced apoptosis by facilitating itch-mediated degradation of the mitochondrial adaptor MAVS. Mol Cell Biol 37Google Scholar
  10. 10.
    Deng Z, Purtell K, Lachance V, Wold MS, Chen S, Yue Z (2017) Autophagy receptors and neurodegenerative diseases. Trends Cell Biol 27:491–504PubMedCrossRefGoogle Scholar
  11. 11.
    Deretic V (2010) Autophagy in infection. Curr Opin Cell Biol 22:252–262PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Deretic V, Levine B (2018) Autophagy balances inflammation in innate immunity. Autophagy 14:243–251PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550PubMedCrossRefGoogle Scholar
  14. 14.
    Du Y, Duan T, Feng Y, Liu Q, Lin M, Cui J, Wang RF (2018) LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J 37:351–366CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ellinghaus D, Zhang H, Zeissig S, Lipinski S, Till A, Jiang T, Stade B, Bromberg Y, Ellinghaus E, Keller A et al (2013) Association between variants of PRDM1 and NDP52 and Crohn’s disease, based on exome sequencing and functional studies. Gastroenterology 145:339–347PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Feng Y, Duan T, Du Y, Jin S, Wang M, Cui J, Wang RF (2017) LRRC25 functions as an Inhibitor of NF-κB signaling pathway by promoting p65/RelA for autophagic degradation. Sci Rep 7:13448PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU, Levine B (2017) The ubiquitin ligase Smurf1 functions in selective autophagy of mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 21:59–72PubMedCrossRefGoogle Scholar
  18. 18.
    Franco LH, Nair VR, Scharn CR, Xavier RJ, Torrealba JR, Shiloh MU, Levine B (2017) The ubiquitin ligase Smurf1 functions in selective autophagy of mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 22:421–423PubMedGoogle Scholar
  19. 19.
    Gleason CE, Ordureau A, Gourlay R, Arthur JS, Cohen P (2011) Polyubiquitin binding to optineurin is required for optimal activation of TANK-binding kinase 1 and production of interferon beta. J Biol Chem 286:35663–35674PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gomes LC, Dikic I (2014) Autophagy in antimicrobial immunity. Mol Cell 54:224–233PubMedCrossRefGoogle Scholar
  21. 21.
    Hafren A, Macia JL, Love AJ, Milner JJ, Drucker M, Hofius D (2017) Selective autophagy limits cauliflower mosaic virus infection by NBR1-mediated targeting of viral capsid protein and particles. Proc Natl Acad Sci USA 114:E2026–E2035PubMedCrossRefGoogle Scholar
  22. 22.
    Hashimoto K, Simmons AN, Kajino-Sakamoto R, Tsuji Y, Ninomiya-Tsuji J (2016) TAK1 regulates the Nrf2 antioxidant system through modulating p62/SQSTM1. Antioxid Redox Sig 25:953–964CrossRefGoogle Scholar
  23. 23.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362CrossRefGoogle Scholar
  24. 24.
    Heath RJ, Goel G, Baxt LA, Rush JS, Mohanan V, Paulus GLC, Jani V, Lassen KG, Xavier RJ (2016) RNF166 determines recruitment of adaptor proteins during antibacterial autophagy. Cell Rep 17:2183–2194PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW (2015) The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol Cell 60:7–20PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Herhaus L, Dikic I (2018) Regulation of Salmonella-host cell interactions via the ubiquitin system. Int J Med Microbiol 308:176–184PubMedCrossRefGoogle Scholar
  27. 27.
    Huett A, Heath RJ, Begun J, Sassi SO, Baxt LA, Vyas JM, Goldberg MB, Xavier RJ (2012) The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12:778–790PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322PubMedCrossRefGoogle Scholar
  29. 29.
    Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein Modifications: Beyond the Usual Suspects’ review series. EMBO Rep 9:536–542PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jin S, Tian S, Luo M, Xie W, Liu T, Duan T, Wu Y, Cui J (2017) Tetherin suppresses type I interferon signaling by targeting MAVS for NDP52-mediated selective autophagic degradation in human cells. Mol Cell 68(308–322):e304Google Scholar
  31. 31.
    Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kanayama M, Inoue M, Danzaki K, Hammer G, He YW, Shinohara ML (2015) Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat Commun 6:5779PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kanki T (2010) Nix, a receptor protein for mitophagy in mammals. Autophagy 6:433–435PubMedCrossRefGoogle Scholar
  34. 34.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMedCrossRefGoogle Scholar
  35. 35.
    Khaminets A, Behl C, Dikic I (2016) Ubiquitin-dependent and independent signals in selective autophagy. Trends Cell Biol 26:6–16PubMedCrossRefGoogle Scholar
  36. 36.
    Kim N, Kim MJ, Sung PS, Bae YC, Shin EC, Yoo JY (2016) Interferon-inducible protein SCOTIN interferes with HCV replication through the autolysosomal degradation of NS5A. Nat Commun 7:10631PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kimura T, Jain A, Choi SW, Mandell MA, Schroder K, Johansen T, Deretic V (2015) TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol 210:973–989PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Kirkin V (2019) History of the selective autophagy research: how did it begin and where does it stand today? J Mol Biol 1–25Google Scholar
  39. 39.
    Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwan DG, Clausen TH, Wild P et al (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33:505–516PubMedCrossRefGoogle Scholar
  40. 40.
    Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269PubMedCrossRefGoogle Scholar
  41. 41.
    Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937PubMedCrossRefGoogle Scholar
  42. 42.
    Kohler LJ, Roy CR (2017) Autophagic targeting and avoidance in intracellular bacterial infections. Curr Opin Microbiol 35:36–41PubMedCrossRefGoogle Scholar
  43. 43.
    Lamark T, Perander M, Outzen H, Kristiansen K, Overvatn A, Michaelsen E, Bjorkoy G, Johansen T (2003) Interaction codes within the family of mammalian Phox and Bem1p domain-containing proteins. J Biol Chem 278:34568–34581PubMedCrossRefGoogle Scholar
  44. 44.
    Levine B (2005) Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 120:159–162PubMedPubMedCentralGoogle Scholar
  45. 45.
    Li T, Hu J, Li L (2004) Characterization of Tollip protein upon Lipopolysaccharide challenge. Mol Immunol 41:85–92PubMedCrossRefGoogle Scholar
  46. 46.
    Ling J, Kang Y, Zhao R, Xia Q, Lee DF, Chang Z, Li J, Peng B, Fleming JB, Wang H et al (2012) KrasG12D-induced IKK2/ β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21:105–120PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Liu K, Zhang L, Zhao Q, Zhao Z, Zhi F, Qin Y, Cui J (2018) SKP2 attenuates NF-κB signaling by mediating IKKβ degradation through autophagy. J Mol Cell Biol 10:205–215PubMedCrossRefGoogle Scholar
  48. 48.
    Liu T, Tang Q, Liu K, Xie W, Liu X, Wang H, Wang RF, Cui J (2016) TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy. Cell Rep 16:1988–2002PubMedCrossRefGoogle Scholar
  49. 49.
    Lu Y, Wang L, He M, Huang W, Li H, Wang Y, Kong J, Qi S, Ouyang J, Qiu X (2012) Nix protein positively regulates NF-kappaB activation in gliomas. PLoS One 7:e44559PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Mandell MA, Jain A, Arko-Mensah J, Chauhan S, Kimura T, Dinkins C, Silvestri G, Munch J, Kirchhoff F, Simonsen A et al (2014) TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell 30:394–409PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mandell MA, Kimura T, Jain A, Johansen T, Deretic V (2014) TRIM proteins regulate autophagy: TRIM5 is a selective autophagy receptor mediating HIV-1 restriction. Autophagy 10:2387–2388PubMedCrossRefGoogle Scholar
  52. 52.
    Manzanillo PS, Ayres JS, Watson RO, Collins AC, Souza G, Rae CS, Schneider DS, Nakamura K, Shiloh MU, Cox JS (2013) The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501:512–516PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Marin M, Rose KM, Kozak SL, Kabat D (2003) HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nat Med 9:1398–1403PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Ann Rev Immunol 27:229–265CrossRefGoogle Scholar
  55. 55.
    Meena NP, Zhu G, Mittelstadt PR, Giardino Torchia ML, Pourcelot M, Arnoult D, Ashwell JD, Munitic I (2016) The TBK1-binding domain of optineurin promotes type I interferon responses. FEBS Lett 590:1498–1508PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Minowa-Nozawa A, Nozawa T, Okamoto-Furuta K, Kohda H, Nakagawa I (2017) Rab35 GTPase recruits NDP52 to autophagy targets. EMBO J 36:2790–2807PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mizushima N, Yoshimori T, Ohsumi Y (2011) The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol 27:107–132PubMedCrossRefGoogle Scholar
  58. 58.
    Moresco EM, LaVine D, Beutler B (2011) Toll-like receptors. Curr Biol 21:R488–R493PubMedCrossRefGoogle Scholar
  59. 59.
    Moscat J, Diaz-Meco MT (2009) p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137:1001–1004PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mostowy S, Sancho-Shimizu V, Hamon MA, Simeone R, Brosch R, Johansen T, Cossart P (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286:26987–26995PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Munitic I, Giardino Torchia ML, Meena NP, Zhu G, Li CC, Ashwell JD (2013) Optineurin insufficiency impairs IRF3 but not NF-κB activation in immune cells. J Immunol 191:6231–6240PubMedCrossRefGoogle Scholar
  62. 62.
    Nagabhushana A, Bansal M, Swarup G (2011) Optineurin is required for CYLD-dependent inhibition of TNFα-induced NF-κB activation. PLoS One 6:e17477PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Nakashima H, Nguyen T, Goins WF, Chiocca EA (2015) Interferon-stimulated gene 15 (ISG15) and ISG15-linked proteins can associate with members of the selective autophagic process, histone deacetylase 6 (HDAC6) and SQSTM1/p62. J Biol Chem 290:1485–1495PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Nakazawa S, Oikawa D, Ishii R, Ayaki T, Takahashi H, Takeda H, Ishitani R, Kamei K, Takeyoshi I, Kawakami H et al (2016) Linear ubiquitination is involved in the pathogenesis of optineurin-associated amyotrophic lateral sclerosis. Nat Commun 7:12547PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Noad J, von der Malsburg A, Pathe C, Michel MA, Komander D, Randow F (2017) LUBAC-synthesized linear ubiquitin chains restrict cytosol-invading bacteria by activating autophagy and NF-κB. Nat Microbiol 2:17063PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A, Rogov V, Lohr F, Popovic D, Occhipinti A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51PubMedCrossRefGoogle Scholar
  67. 67.
    Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-κB signaling pathways. Nat Immunol 12:695–708PubMedCrossRefGoogle Scholar
  68. 68.
    Orvedahl A, MacPherson S, Sumpter R Jr, Talloczy Z, Zou Z, Levine B (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–127PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Orvedahl A, Sumpter R Jr, Xiao G, Ng A, Zou Z, Tang Y, Narimatsu M, Gilpin C, Sun Q, Roth M et al (2011) Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480:113–117PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Parvatiyar K, Barber GN, Harhaj EW (2010) TAX1BP1 and A20 inhibit antiviral signaling by targeting TBK1-IKKi kinases. J Biol Chem 285:14999–15009PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Petkova DS, Verlhac P, Rozieres A, Baguet J, Claviere M, Kretz-Remy C, Mahieux R, Viret C, Faure M (2017) Distinct contributions of autophagy receptors in measles virus replication. Viruses 9Google Scholar
  72. 72.
    Polajnar M, Dietz MS, Heilemann M, Behrends C (2017) Expanding the host cell ubiquitylation machinery targeting cytosolic Salmonella. EMBO Rep 18:1572–1585PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, Zhao Z, Virgin HW 4th, Kyei GB, Johansen T, Vergne I et al (2010) Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329–341PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Prabakaran T, Bodda C, Krapp C, Zhang BC, Christensen MH, Sun C, Reinert L, Cai Y, Jensen SB, Skouboe MK et al (2018) Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J 37Google Scholar
  75. 75.
    Qi N, Shi Y, Zhang R, Zhu W, Yuan B, Li X, Wang C, Zhang X, Hou F (2017) Multiple truncated isoforms of MAVS prevent its spontaneous aggregation in antiviral innate immune signalling. Nat Commun 8:15676PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Richter B, Sliter DA, Herhaus L, Stolz A, Wang C, Beli P, Zaffagnini G, Wild P, Martens S, Wagner SA et al (2016) Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci USA 113:4039–4044PubMedCrossRefGoogle Scholar
  77. 77.
    Rogov V, Dotsch V, Johansen T, Kirkin V (2014) Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 53:167–178PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Sagnier S, Daussy CF, Borel S, Robert-Hebmann V, Faure M, Blanchet FP, Beaumelle B, Biard-Piechaczyk M, Espert L (2015) Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J Virol 89:615–625PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sanchez-Martin P, Saito T, Komatsu M (2019) p62/SQSTM1: ‘Jack of all trades’ in health and cancer. FEBS J 286:8–23PubMedCrossRefGoogle Scholar
  80. 80.
    Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Shaid S, Brandts CH, Serve H, Dikic I (2013) Ubiquitination and selective autophagy. Cell Death Differ 20:21–30PubMedCrossRefGoogle Scholar
  82. 82.
    Sharma V, Verma S, Seranova E, Sarkar S, Kumar D (2018) Selective autophagy and xenophagy in infection and disease. Front Cell Dev Biol 6:147PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Shembade N, Harhaj NS, Liebl DJ, Harhaj EW (2007) Essential role for TAX1BP1 in the termination of TNF-α-, IL-1- and LPS-mediated NF-κB and JNK signaling. EMBO J 26:3910–3922PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW (2009) The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-κB signalling. EMBO J 28:513–522PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Slowicka K, van Loo G (2018) Optineurin functions for optimal immunity. Front Immunol 9:769PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Slowicka K, Vereecke L, Mc Guire C, Sze M, Maelfait J, Kolpe A, Saelens X, Beyaert R, van Loo G (2016) Optineurin deficiency in mice is associated with increased sensitivity to Salmonella but does not affect proinflammatory NF-κB signaling. Eur J Immunol 46:971–980PubMedCrossRefGoogle Scholar
  88. 88.
    Spinnenhirn V, Farhan H, Basler M, Aichem A, Canaan A, Groettrup M (2014) The ubiquitin-like modifier FAT10 decorates autophagy-targeted Salmonella and contributes to Salmonella resistance in mice. J Cell Sci 127:4883–4893PubMedCrossRefGoogle Scholar
  89. 89.
    Staring J, von Castelmur E, Blomen VA, van den Hengel LG, Brockmann M, Baggen J, Thibaut HJ, Nieuwenhuis J, Janssen H, van Kuppeveld FJ et al (2017) PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature 541:412–416PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501PubMedCrossRefGoogle Scholar
  91. 91.
    Sudhakar C, Nagabhushana A, Jain N, Swarup G (2009) NF-κB mediates tumor necrosis factor α-induced expression of optineurin, a negative regulator of NF-κB. PLoS One 4:e5114PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Sumpter R Jr, Sirasanagandla S, Fernandez AF, Wei Y, Dong X, Franco L, Zou Z, Marchal C, Lee MY, Clapp DW et al (2016) Fanconi Anemia Proteins function in mitophagy and immunity. Cell 165:867–881PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Tanishima M, Takashima S, Honda A, Yasuda D, Tanikawa T, Ishii S, MaruYama T (2017) Identification of optineurin as an interleukin-1 receptor-associated kinase 1-binding protein and its role in regulation of MyD88-dependent signaling. J Biol Chem 292:17250–17257PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10:1215–1221PubMedCrossRefGoogle Scholar
  95. 95.
    Thurston TL, Wandel MP, von Muhlinen N, Foeglein A, Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482:414–418PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Till A, Lipinski S, Ellinghaus D, Mayr G, Subramani S, Rosenstiel P, Franke A (2013) Autophagy receptor CALCOCO2/NDP52 takes center stage in Crohn disease. Autophagy 9:1256–1257PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tumbarello DA, Manna PT, Allen M, Bycroft M, Arden SD, Kendrick-Jones J, Buss F (2015) The autophagy receptor TAX1BP1 and the molecular motor Myosin VI are required for clearance of Salmonella Typhimurium by autophagy. PLoS Pathog 11:e1005174PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Valera MS, de Armas-Rillo L, Barroso-Gonzalez J, Ziglio S, Batisse J, Dubois N, Marrero-Hernandez S, Borel S, Garcia-Exposito L, Biard-Piechaczyk M et al (2015) The HDAC6/APOBEC3G complex regulates HIV-1 infectiveness by inducing Vif autophagic degradation. Retrovirology 12:53PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    van Wijk SJL, Fricke F, Herhaus L, Gupta J, Hotte K, Pampaloni F, Grumati P, Kaulich M, Sou YS, Komatsu M et al (2017) Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nat Microbiol 2:17066PubMedCrossRefGoogle Scholar
  100. 100.
    von Muhlinen N, Thurston T, Ryzhakov G, Bloor S, Randow F (2010) NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria. Autophagy 6:288–289CrossRefGoogle Scholar
  101. 101.
    Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Xian H, Yang S, Jin S, Zhang Y, Cui J (2019) LRRC59 modulates type I interferon signaling by restraining the SQSTM1/p62-mediated autophagic degradation of pattern recognition receptor DDX58/RIG-I. Autophagy 1–11Google Scholar
  103. 103.
    Yang Q, Liu TT, Lin H, Zhang M, Wei J, Luo WW, Hu YH, Zhong B, Hu MM, Shu HB (2017) TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLoS Pathog 13:e1006600PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhang X, Bogunovic D, Payelle-Brogard B, Francois-Newton V, Speer SD, Yuan C, Volpi S, Li Z, Sanal O, Mansouri D et al (2015) Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517:89–93PubMedCrossRefGoogle Scholar
  105. 105.
    Zhang X, Zhang MC, Wang CT (2018) Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-beta1. Biochem Biophys Res Commun 506:137–144PubMedCrossRefGoogle Scholar
  106. 106.
    Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183:5909–5916PubMedCrossRefGoogle Scholar
  107. 107.
    Zhong Z, Umemura A, Sanchez-Lopez E, Liang S, Shalapour S, Wong J, He F, Boassa D, Perkins G, Ali SR et al (2016) NF-κB restricts inflammasome activation via elimination of damaged Mitochondria. Cell 164:896–910PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Zhu G, Wu CJ, Zhao Y, Ashwell JD (2007) Optineurin negatively regulates TNFα- induced NF-κB activation by competing with NEMO for ubiquitinated RIP. Curr Biol 17:1438–1443PubMedCrossRefGoogle Scholar
  109. 109.
    Zotti T, Scudiero I, Settembre P, Ferravante A, Mazzone P, D’Andrea L, Reale C, Vito P, Stilo R (2014) TRAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1. Mol Immunol 58:27–31PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life SciencesSun Yat-sen UniversityGuangzhouChina

Personalised recommendations