Advertisement

Autophagy and Immune-Related Diseases

  • Peng TanEmail author
  • Youqiong YeEmail author
  • Jingrong Mao
  • Lian He
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1209)

Abstract

Autophagy is an intracellular degradation and recycling machinery by which cellular materials are delivered to the lysosome for disposal. Beyond lysosomal degradation, autophagy genes play additional roles in secretion and membrane-trafficking pathways. Ranging from cell-intrinsic and cell-type-specific regulation of innate inflammatory signaling pathways to intercellular cross talk through secretion of soluble factors (e.g., shaping the MHC immunopeptidome for T cell response, etc.), autophagy exerts multiple functions in driving inflammation and modulating the pathological progression of immune-related disorders such as neurodegenerative diseases, inflammatory bowel diseases, autoimmunity, and metabolic diseases. Notably, owing to the complexity of autophagy process involving multiple proteins and stepwise assembly of protein complexes, noncanonical forms of autophagy or autophagic proteins, which function beyond autophagy, are equally important in the maintenance of cellular homeostasis and pathogenesis. This chapter summarizes the most up-to-date findings of autophagy proteins in the regulation of immune-related diseases. Understanding of the autophagy machinery offers therapeutic strategies for treating inflammatory diseases.

Keywords

Autophagy Autoimmune Neurodegeneration Inflammatory bowel disease Metabolic disease Aging 

References

  1. 1.
    Aden K, Tran F, Ito G, Sheibani-Tezerji R, Lipinski S, Kuiper JW, Tschurtschenthaler M, Saveljeva S, Bhattacharyya J, Hasler R et al (2018) ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J Exp Med 215:2868–2886PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Alissafi T, Banos A, Boon L, Sparwasser T, Ghigo A, Wing K, Vassilopoulos D, Boumpas D, Chavakis T, Cadwell K et al (2017) Tregs restrain dendritic cell autophagy to ameliorate autoimmunity. J Clin Invest 127:2789–2804PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Beavan MS, Schapira AH (2013) Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Ann Med 45:511–521PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bel S, Pendse M, Wang Y, Li Y, Ruhn KA, Hassell B, Leal T, Winter SE, Xavier RJ, Hooper LV (2017) Paneth cells secrete lysozyme via secretory autophagy during bacterial infection of the intestine. Science 357:1047–1052PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bhattacharya A, Parillon X, Zeng S, Han S, Eissa NT (2014) Deficiency of autophagy in dendritic cells protects against experimental autoimmune encephalomyelitis. J Biol Chem 289:26525–26532PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM et al (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192PubMedGoogle Scholar
  7. 7.
    Brown EM, Kenny DJ, Xavier RJ (2019) Gut microbiota regulation of T cells during inflammation and autoimmunity. Annu Rev Immunol 37:599–624PubMedCrossRefGoogle Scholar
  8. 8.
    Chauhan S, Mandell MA, Deretic V (2015) IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol Cell 58:507–521PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chen M, Hong MJ, Sun H, Wang L, Shi X, Gilbert BE, Corry DB, Kheradmand F, Wang J (2014) Essential role for autophagy in the maintenance of immunological memory against influenza infection. Nat Med 20:503–510PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chitnis T, Weiner HL (2017) CNS inflammation and neurodegeneration. J Clin Invest 127:3577–3587PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Cunha LD, Yang M, Carter R, Guy C, Harris L, Crawford JC, Quarato G, Boada-Romero E, Kalkavan H, Johnson MDL et al (2018) LC3-associated phagocytosis in myeloid cells promotes tumor immune tolerance. Cell 175(429–441):e416Google Scholar
  13. 13.
    Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Falcao AM, van Bruggen D, Marques S, Meijer M, Jakel S, Agirre E, Samudyata, Floriddia EM, Vanichkina DP, Ffrench-Constant C et al (2018) Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat Med 24:1837–1844PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Fernandez AF, Sebti S, Wei Y, Zou Z, Shi M, McMillan KL, He C, Ting T, Liu Y, Chiang WC et al (2018) Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice. Nature 558:136–140PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, Vatanen T, Hall AB, Mallick H, McIver LJ et al (2019) Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol 4:293–305PubMedCrossRefGoogle Scholar
  17. 17.
    Ghosh A, Tyson T, George S, Hildebrandt EN, Steiner JA, Madaj Z, Schulz E, Machiela E, McDonald WG, Escobar Galvis ML et al (2016) Mitochondrial pyruvate carrier regulates autophagy, inflammation, and neurodegeneration in experimental models of Parkinson’s disease. Sci Transl Med 8:368ra174PubMedCrossRefGoogle Scholar
  18. 18.
    Graham DB, Luo C, O’Connell DJ, Lefkovith A, Brown EM, Yassour M, Varma M, Abelin JG, Conway KL, Jasso GJ et al (2018) Antigen discovery and specification of immunodominance hierarchies for MHCII-restricted epitopes. Nat Med 24:1762–1772PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Grootjans J, Krupka N, Hosomi S, Matute JD, Hanley T, Saveljeva S, Gensollen T, Heijmans J, Li H, Limenitakis JP et al (2019) Epithelial endoplasmic reticulum stress orchestrates a protective IgA response. Science 363:993–998PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gukovsky I, Li N, Todoric J, Gukovskaya A, Karin M (2013) Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology 144(1199–1209):e1194Google Scholar
  22. 22.
    Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y et al (2017) A single-cell survey of the small intestinal epithelium. Nature 551:333–339PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hansen M, Rubinsztein DC, Walker DW (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 19:579–593PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch LN, Khan S, Sinha S et al (2013) Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell 154:1085–1099PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Heckmann BL, Boada-Romero E, Cunha LD, Magne J, Green DR (2017) LC3-associated phagocytosis and inflammation. J Mol Biol 429:3561–3576PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, Spekhorst LM, Alberts R, Franke L, van Dullemen HM et al (2018) Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67:108–119PubMedCrossRefGoogle Scholar
  28. 28.
    Jung HS, Chung KW, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen YH, Kang TM, Yoon KH, Kim JW et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324PubMedCrossRefGoogle Scholar
  29. 29.
    Kabat AM, Harrison OJ, Riffelmacher T, Moghaddam AE, Pearson CF, Laing A, Abeler-Dorner L, Forman SP, Grencis RK, Sattentau Q et al (2016) The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. Elife 5:e12444PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Keller CW, Sina C, Kotur MB, Ramelli G, Mundt S, Quast I, Ligeon LA, Weber P, Becher B, Munz C et al (2017) ATG-dependent phagocytosis in dendritic cells drives myelin-specific CD4(+) T cell pathogenicity during CNS inflammation. Proc Natl Acad Sci USA 114:E11228–E11237PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kovacs JR, Li C, Yang Q, Li G, Garcia IG, Ju S, Roodman DG, Windle JJ, Zhang X, Lu B (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 19:144–152PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Larabi A, Barnich N, Nguyen HTT (2019) New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 1–14Google Scholar
  34. 34.
    Lassen KG, McKenzie CI, Mari M, Murano T, Begun J, Baxt LA, Goel G, Villablanca EJ, Kuo SY, Huang H et al (2016) Genetic coding variant in GPR65 alters lysosomal pH and links lysosomal dysfunction with colitis risk. Immunity 44:1392–1405PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lavoie S, Conway KL, Lassen KG, Jijon HB, Pan H, Chun E, Michaud M, Lang JK, Gallini Comeau CA, Dreyfuss JM et al (2019) The Crohn’s disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. Elife 8Google Scholar
  36. 36.
    Lee JH, Budanov AV, Park EJ, Birse R, Kim TE, Perkins GA, Ocorr K, Ellisman MH, Bodmer R, Bier E et al (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327:1223–1228PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Leyns CEG, Gratuze M, Narasimhan S, Jain N, Koscal LJ, Jiang H, Manis M, Colonna M, Lee VMY, Ulrich JD et al (2019) TREM2 function impedes tau seeding in neuritic plaques. Nat Neurosci 22:1217–1222PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Lin NY, Beyer C, Giessl A, Kireva T, Scholtysek C, Uderhardt S, Munoz LE, Dees C, Distler A, Wirtz S et al (2013) Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Ann Rheum Dis 72:761–768PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, Andrews E, Ajami NJ, Bonham KS, Brislawn CJ et al (2019) Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569:655–662PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mansueto G, Armani A, Viscomi C, D’Orsi L, De Cegli R, Polishchuk EV, Lamperti C, Di Meo I, Romanello V, Marchet S et al (2017) Transcription factor EB controls metabolic flexibility during exercise. Cell Metab 25:182–196PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Martinez J, Cunha LD, Park S, Yang M, Lu Q, Orchard R, Li QZ, Yan M, Janke L, Guy C et al (2016) Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533:115–119PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Martinez-Martin N, Maldonado P, Gasparrini F, Frederico B, Aggarwal S, Gaya M, Tsui C, Burbage M, Keppler SJ, Montaner B et al (2017) A switch from canonical to noncanonical autophagy shapes B cell responses. Science 355:641–647PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Matsuzawa-Ishimoto Y, Shono Y, Gomez LE, Hubbard-Lucey VM, Cammer M, Neil J, Dewan MZ, Lieberman SR, Lazrak A, Marinis JM et al (2017) Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J Exp Med 214:3687–3705PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mehto S, Jena KK, Nath P, Chauhan S, Kolapalli SP, Das SK, Sahoo PK, Jain A, Taylor GA, Chauhan S (2019) The Crohn’s disease risk factor IRGM limits NLRP3 inflammasome activation by impeding its assembly and by mediating its selective autophagy. Mol Cell 73(429–445):e427Google Scholar
  46. 46.
    Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823–830PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Moors TE, Hoozemans JJ, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin MC, van de Berg WD (2017) Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol Neurodegener 12:11PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Munz C (2016) Autophagy proteins in antigen processing for presentation on MHC molecules. Immunol Rev 272:17–27PubMedCrossRefGoogle Scholar
  49. 49.
    Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC (2013) Abeta secretion and plaque formation depend on autophagy. Cell Rep 5:61–69PubMedCrossRefGoogle Scholar
  50. 50.
    Nixon RA (2013) The role of autophagy in neurodegenerative disease. Nat Med 19:983–997PubMedCrossRefGoogle Scholar
  51. 51.
    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39:830–832PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ponpuak M, Mandell MA, Kimura T, Chauhan S, Cleyrat C, Deretic V (2015) Secretory autophagy. Curr Opin Cell Biol 35:106–116PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Pua HH, Dzhagalov I, Chuck M, Mizushima N, He YW (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204:25–31PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39:596–604PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Saligrama N, Zhao F, Sikora MJ, Serratelli WS, Fernandes RA, Louis DM, Yao W, Ji X, Idoyaga J, Mahajan VB et al (2019) Opposing T cell responses in experimental autoimmune encephalomyelitis. Nature 572:481–487PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Salio M, Puleston DJ, Mathan TS, Shepherd D, Stranks AJ, Adamopoulou E, Veerapen N, Besra GS, Hollander GA, Simon AK et al (2014) Essential role for autophagy during invariant NKT cell development. Proc Natl Acad Sci USA 111:E5678–E5687PubMedCrossRefGoogle Scholar
  57. 57.
    Schirmer M, Garner A, Vlamakis H, Xavier RJ (2019) Microbial genes and pathways in inflammatory bowel disease. Nat Rev Microbiol 17:497–511PubMedCrossRefGoogle Scholar
  58. 58.
    Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, Horst RT, Jansen T, Jacobs L, Bonder MJ et al (2016) Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 167:1897PubMedCrossRefGoogle Scholar
  59. 59.
    Schmid D, Pypaert M, Munz C (2007) Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity 26:79–92PubMedCrossRefGoogle Scholar
  60. 60.
    Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, Bar-Shira A, Berg D, Bras J, Brice A et al (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 361:1651–1661PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313:1438–1441PubMedCrossRefGoogle Scholar
  63. 63.
    Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G, Graham DB, Herbst RH, Rogel N, Slyper M, Waldman J et al (2019) Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178(714–730):e722Google Scholar
  64. 64.
    Tan JMJ, Mellouk N, Osborne SE, Ammendolia DA, Dyer DN, Li R, Brunen D, van Rijn JM, Huang J, Czuczman MA et al (2018) An ATG16L1-dependent pathway promotes plasma membrane repair and limits Listeria monocytogenes cell-to-cell spread. Nat Microbiol 3:1472–1485PubMedCrossRefGoogle Scholar
  65. 65.
    Tanaka S, Hikita H, Tatsumi T, Sakamori R, Nozaki Y, Sakane S, Shiode Y, Nakabori T, Saito Y, Hiramatsu N et al (2016) Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64:1994–2014PubMedCrossRefGoogle Scholar
  66. 66.
    Tsuboi K, Nishitani M, Takakura A, Imai Y, Komatsu M, Kawashima H (2015) Autophagy protects against colitis by the maintenance of normal gut microflora and secretion of mucus. J Biol Chem 290:20511–20526PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Ulland TK, Song WM, Huang SC, Ulrich JD, Sergushichev A, Beatty WL, Loboda AA, Zhou Y, Cairns NJ, Kambal A et al (2017) TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 170(649–663):e613Google Scholar
  68. 68.
    Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Vieira-Saecker A, Schwartz S, Santarelli F, Kummer MP et al (2017) Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer’s disease. Nature 552:355–361PubMedCrossRefGoogle Scholar
  69. 69.
    Voet S, Srinivasan S, Lamkanfi M, van Loo G (2019) Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med 11PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wei J, Long L, Yang K, Guy C, Shrestha S, Chen Z, Wu C, Vogel P, Neale G, Green DR et al (2016) Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat Immunol 17:277–285PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Xu X, Araki K, Li S, Han JH, Ye L, Tan WG, Konieczny BT, Bruinsma MW, Martinez J, Pearce EL et al (2014) Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol 15:1152–1161PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11:467–478PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yang L, Liu C, Zhao W, He C, Ding J, Dai R, Xu K, Xiao L, Luo L, Liu S et al (2018). Impaired autophagy in intestinal epithelial cells alters gut microbiota and host immune responses. Appl Environ Microbiol 84Google Scholar
  74. 74.
    Zhang C, Cuervo AM (2008) Restoration of chaperone-mediated autophagy in aging liver improves cellular maintenance and hepatic function. Nat Med 14:959–965PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Zhang Y, Sowers JR, Ren J (2018) Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol 14:356–376PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Zhong Z, Sanchez-Lopez E, Karin M (2016) Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166:288–298PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhou Y, Ulland TK, Colonna M (2018) TREM2-dependent effects on microglia in Alzheimer’s disease. Front Aging Neurosci 10:202PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, Sakmann B, Walsh DM, Konnerth A (2019) A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science 365:559–565PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Biosciences and Technology, College of MedicineTexas A&M UniversityHoustonUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Texas Health Science Center at Houston McGovern Medical SchoolHoustonUSA
  3. 3.Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations