Immune Signaling and Autophagy Regulation

  • Fang Hua
  • Ke Li
  • Shuang Shang
  • Feng Wang
  • Zhuowei HuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1206)


Autophagy is one of the key degradation systems in organisms. Starvation and nutrient deprivation induce autophagy activation, providing energy and anabolic substances to maintain energy homeostasis. A variety of signals participate in the induction of autophagy, including endoplasmic reticulum stress, oxidative stress, and activation of immune signals. Autophagy is closely related to immunity and inflammation. Autophagy-related gene mutations increase the risk of infectious diseases and malignancies. Autophagy can be regarded as an effector of the immune system to eliminate invading pathogens and is also involved in the immune system recognizing the invasion of pathogens. Autophagy plays important roles in regulating innate immunity and adaptive immunity. In terms of innate immunity, autophagy not only participates in the clearance of pathogens and cell debris after apoptosis but also plays a protective role against toxins, regulates cytokine production, and activates the inflammasome. In the adaptive immune response, autophagy plays an important regulatory role in thymic selection, T cell maturation, T cell polarization, T cell and B cell homeostasis, antigen processing, antigen presentation, and antibody response. On the other hand, autophagy is regulated by immunological and stress signals. The crosstalk between these signaling pathways helps maintain homeostasis and physiological functions. Dysfunction of these regulatory networks is the cause of several kinds of diseases.


Autophagy Cytokines TLRs 



Acidic activation domain


dsRNA-specific adenosine deaminase


Activation-induced cell death


Aggresome-like induced structures


Antigen presenting cells


B cell receptor


Caspase recruitment domains


C-type lectin receptors


Carbohydrate recognition domain


Cytotoxic T lymphocyte-associated antigen-4


Death-associated protein kinase


Damage-associated molecular patterns


Dendritic cell


Death domain


Guanylate-binding protein


Glucose-regulated protein


High mobility group box 1


IFN-β-promoter stimulator 1


Inositol-requiring enzyme 1


Inositol-requiring enzyme 1α


Immunoreceptor tyrosine-based activation motif


c-Jun N-terminal kinase


Leucine-rich repeat




Myeloid differentiation factor 2


Major histocompatibility complex antigen


NOD-like receptors


p38 interacting protein


Pathogen-associated molecular patterns




Class III phosphatidylinositol 3-kinase


Reactive oxygen species


Suppressor of cytokine Signaling


T cell growth factor


T cell receptor


Toll-like receptors


Toll-Interleukin 1 Receptor


Tumor necrosis factor receptor (TNFR)-associated factor 6


Tumor necrosis factor alpha


Transforming growth factor beta


Unfolded protein response


  1. Anand PK, Tait SW, Lamkanfi M, Amer AO, Nunez G, Pages G, Pouyssegur J, McGargill MA, Green DR, Kanneganti TD (2011) TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J Biol Chem 286:42981–42991CrossRefGoogle Scholar
  2. Andrade-Silva M, Cenedeze MA, Perandini LA, Felizardo RJF, Watanabe IKM, Agudelo JSH, Castoldi A, Goncalves GM, Origassa CST, Semedo P, Hiyane MI, Foresto-Neto O, Malheiros D, Reis MA, Fujihara CK, Zatz R, Pacheco-Silva A, Camara NOS, de Almeida DC (2018) TLR2 and TLR4 play opposite role in autophagy associated with cisplatin-induced acute kidney injury. Clin Sci (Lond) 132:1725–1739CrossRefGoogle Scholar
  3. Cosin-Roger J, Simmen S, Melhem H, Atrott K, Frey-Wagner I, Hausmann M, de Valliere C, Spalinger MR, Spielmann P, Wenger RH, Zeitz J, Vavricka SR, Rogler G, Ruiz PA (2017) Hypoxia ameliorates intestinal inflammation through NLRP3/mTOR downregulation and autophagy activation. Nat Commun 8:98CrossRefGoogle Scholar
  4. Ding Y, Choi ME (2014) Regulation of autophagy by TGF-β: emerging role in kidney fibrosis. Semin Nephrol 34:62–71CrossRefGoogle Scholar
  5. Dolasia K, Bisht MK, Pradhan G, Udgata A, Mukhopadhyay S (2018) TLRs/NLRs: shaping the landscape of host immunity. Int Rev Immunol 37:3–19CrossRefGoogle Scholar
  6. Dzamko N, Gysbers A, Perera G, Bahar A, Shankar A, Gao J, Fu Y, Halliday GM (2017) Toll-like receptor 2 is increased in neurons in Parkinson’s disease brain and may contribute to alpha-synuclein pathology. Acta Neuropathol 133:303–319CrossRefGoogle Scholar
  7. Fan J-B, Miyauchi-Ishida S, Arimoto K-I, Liu D, Yan M, Liu C-W, Győrffy B, Zhang D-E (2015) Type I IFN induces protein ISGylation to enhance cytokine expression and augments colonic inflammation. Proc Natl Acad Sci USA 112:14313–14318CrossRefGoogle Scholar
  8. Feng D, Park O, Radaeva S, Wang H, Yin S, Kong X, Zheng M, Zakhari S, Kolls JK, Gao B (2012) Interleukin-22 ameliorates cerulein-induced pancreatitis in mice by inhibiting the autophagic pathway. Int J Biol Sci 8:249–257CrossRefGoogle Scholar
  9. Harris J (2011) Autophagy and cytokines. Cytokine 56:140–144CrossRefGoogle Scholar
  10. Harris J, de Haro SA, Master SS, Keane J, Roberts EA, Delgado M, Deretic V (2007) T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis. Immunity 27:505–517CrossRefGoogle Scholar
  11. Kang R, Tang D, Lotze MT, Zeh III HJ (2013) Autophagy is required for IL-2-mediated fibroblast growth. Exp Cell Res 319:556–565CrossRefGoogle Scholar
  12. Li X, Luo H, Ye Y, Chen X, Zou Y, Duan J, Xiang D (2019) Betaglucan, a dectin1 ligand, promotes macrophage M1 polarization via NFkappaB/autophagy pathway. Int J Oncol 54:271–282PubMedGoogle Scholar
  13. Lin H, Yan J, Wang Z, Hua F, Yu J, Sun W, Li K, Liu H, Yang H, Lv Q, Xue J, Hu ZW (2013) Loss of immunity-supported senescence enhances susceptibility to hepatocellular carcinogenesis and progression in Toll-like receptor 2-deficient mice. Hepatology 57:171–182CrossRefGoogle Scholar
  14. Liu H, Mi S, Li Z, Hua F, Hu Z-W (2013) Interleukin 17A inhibits autophagy through activation of PIK3CA to interrupt the GSK3B-mediated degradation of BCL2 in lung epithelial cells. Autophagy 9:730–742CrossRefGoogle Scholar
  15. Mi S, Li Z, Yang HZ, Liu H, Wang JP, Ma YG, Wang XX, Liu HZ, Sun W, Hu ZW (2011) Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms. J Immunol 187:3003–3014CrossRefGoogle Scholar
  16. Mocholi E, Dowling SD, Botbol Y, Gruber RC, Ray AK, Vastert S, Shafit-Zagardo B, Coffer PJ, Macian F (2018) Autophagy is a tolerance-avoidance mechanism that modulates TCR-mediated signaling and cell metabolism to prevent induction of T cell anergy. Cell Rep 24:1136–1150CrossRefGoogle Scholar
  17. Munz C (2016) Autophagy beyond intracellular MHC class II antigen presentation. Trends Immunol 37:755–763CrossRefGoogle Scholar
  18. Schmeisser H, Fey SB, Horowitz J, Fischer ER, Balinsky CA, Miyake K, Bekisz J, Snow AL, Zoon KC (2013) Type I interferons induce autophagy in certain human cancer cell lines. Autophagy 9:683–696CrossRefGoogle Scholar
  19. Wang L, Zhang H, Qian J, Wang K, Zhu J (2014) Interleukin-10 blocks in vitro replication of human cytomegalovirus by inhibiting the virus-induced autophagy in MRC5 cells. Biochem Biophys Res Commun 448:448–453CrossRefGoogle Scholar
  20. Wang Z, Yan J, Lin H, Hua F, Wang X, Liu H, Lv X, Yu J, Mi S, Wang J, Hu ZW (2013) Toll-like receptor 4 activity protects against hepatocellular tumorigenesis and progression by regulating expression of DNA repair protein Ku70 in mice. Hepatology 57:1869–1881CrossRefGoogle Scholar
  21. Wen X, Han XR, Wang YJ, Wang S, Shen M, Zhang ZF, Fan SH, Shan Q, Wang L, Li MQ, Hu B, Sun CH, Wu DM, Lu J, Zheng YL (2018) MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J Cell Physiol 233:7022–7034CrossRefGoogle Scholar
  22. Xu X, Araki K, Li S, Han JH, Ye L, Tan WG, Konieczny BT, Bruinsma MW, Martinez J, Pearce EL, Green DR, Jones DP, Virgin HW, Ahmed R (2014) Autophagy is essential for effector CD8(+) T cell survival and memory formation. Nat Immunol 15:1152–1161CrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Fang Hua
    • 1
  • Ke Li
    • 2
  • Shuang Shang
    • 1
  • Feng Wang
    • 1
  • Zhuowei Hu
    • 1
    Email author
  1. 1.State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople’s Republic of China
  2. 2.NHC Key Laboratory of Biotechnology of AntibioticsInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina

Personalised recommendations