Advertisement

Structural Basis of Autophagy Regulatory Proteins

  • Lifeng PanEmail author
  • Jianping Liu
  • Ying Li
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1206)

Abstract

Autophagy is an evolutionarily conserved lysosome-dependent intracellular degradation process that is essential for the maintenance of cellular homeostasis and adaptation to cellular stresses in eukaryotic cells. The most well-characterized type of autophagy, the macroautophagy, involves the progressive sequestration of cytoplasmic components into dedicated double-membraned vesicles called autophagosomes, which ultimately fuse with lysosomes to initiate the autophagic degradation of the sequestered cargo. In the past decade, our understanding of the molecular mechanism of macroautophagy has significantly evolved, with particular contributions from the biochemical and structural characterizations of autophagy-related proteins. In this chapter, we focus on some autophagy regulatory proteins involved in the macroautophagy pathway, summarize their currently known structures, and discuss their relevant molecular mechanisms from a perspective of structural biology.

Keywords

Autophagy Structural biology Macroautophagy Autophagy regulatory proteins 

References

  1. Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR (2002) Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat Struct Biol 9:107–111PubMedCrossRefPubMedCentralGoogle Scholar
  2. Backer JM (2008) The regulation and function of Class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17PubMedCrossRefGoogle Scholar
  3. Backer JM (2016) The intricate regulation and complex functions of the Class III phosphoinositide 3-kinase Vps34. Biochem J 473:2251–2271PubMedCrossRefPubMedCentralGoogle Scholar
  4. Baker RW, Jeffrey PD, Zick M, Phillips BP, Wickner WT et al (2015) A direct role for the Sec1/Munc18-family protein Vps33 as a template for SNARE assembly. Science 349:1111–1114PubMedPubMedCentralCrossRefGoogle Scholar
  5. Balderhaar HJK, Ungermann C (2013) CORVET and HOPS tethering complexes—coordinators of endosome and lysosome fusion. J Cell Sci 126:1307–1316CrossRefGoogle Scholar
  6. Bas L, Papinski D, Licheva M, Torggler R, Rohringer S et al (2018) Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion. J Cell Biol 217:3656–3669PubMedPubMedCentralCrossRefGoogle Scholar
  7. Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R et al (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22:1161–1172PubMedCrossRefGoogle Scholar
  8. Chen D, Fan W, Lu Y, Ding X, Chen S et al (2012) A mammalian autophagosome maturation mechanism mediated by TECPR1 and the Atg12-Atg5 conjugate. Mol Cell 45:629–641PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen MB, Ji XZ, Liu YY, Zeng P, Xu XY et al (2017) Ulk1 over-expression in human gastric cancer is correlated with patients’ T classification and cancer relapse. Oncotarget 8:33704–33712PubMedPubMedCentralGoogle Scholar
  10. Chen X, Liu M, Tian Y, Li J, Qi Y et al (2018) Cryo-EM structure of human mTOR complex 2. Cell Res 28:518–528PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cheng XF, Wang YL, Gong YK, Li FX, Guo YJ et al (2016) Structural basis of FYCO1 and MAP1LC3A interaction reveals a novel binding mode for Atg8-family proteins. Autophagy. 12:1330–1339PubMedPubMedCentralCrossRefGoogle Scholar
  12. Corona AK, Jackson WT (2018) Finding the middle ground for autophagic fusion requirements. Trends Cell Biol 28:869–881PubMedPubMedCentralCrossRefGoogle Scholar
  13. Diao J, Liu R, Rong Y, Zhao M, Zhang J et al (2015) ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520:563PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI et al (2014) WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 55:238–252PubMedPubMedCentralCrossRefGoogle Scholar
  15. Farre JC, Subramani S (2016) Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol 17:537–552PubMedPubMedCentralCrossRefGoogle Scholar
  16. Fernandez AF, Lopez-Otin C (2015) The functional and pathologic relevance of autophagy proteases. J Clin Invest. 125:33–41PubMedPubMedCentralCrossRefGoogle Scholar
  17. Fritsch R, Downward J (2013) SnapShot: Class I PI3K isoform signaling. Cell 154(940–40):e1Google Scholar
  18. Fujioka Y, Suzuki SW, Yamamoto H, Kondo-Kakuta C, Kimura Y et al (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21:513–521PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ganley IG, Lam du H, Wang J, Ding X, Chen S et al (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305CrossRefGoogle Scholar
  20. Gao JQ, Reggiori F, Ungermann C (2018) A novel in vitro assay reveals SNARE topology and the role of Ykt6 in autophagosome fusion with vacuoles. J Cell Biol 217:3670–3682PubMedPubMedCentralCrossRefGoogle Scholar
  21. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66:789–800PubMedPubMedCentralCrossRefGoogle Scholar
  22. Geng JF, Klionsky DJ (2008) The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. EMBO Rep 9:859–864PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18:556–566PubMedPubMedCentralCrossRefGoogle Scholar
  24. Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157:65–75PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hardie DG (2014) AMPK–sensing energy while talking to other signaling pathways. Cell Metab 20:939–952PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hardie DG, Schaffer BE, Brunet A (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 26:190–201PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J et al (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hong SB, Kim BW, Lee KE, Kim SW, Jeon H et al (2011) Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol 18:1323–U32PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hong SB, Kim BW, Kim JH, Song HK (2012) Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D 68:1409–1417PubMedCrossRefPubMedCentralGoogle Scholar
  30. Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hurley JH, Young LN (2017) Mechanisms of autophagy initiation. Annu Rev Biochem 86:225–244PubMedPubMedCentralCrossRefGoogle Scholar
  32. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590PubMedCrossRefGoogle Scholar
  33. Itakura E, Kishi-Itakura C, Mizushima N (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151:1256–1269PubMedCrossRefGoogle Scholar
  34. Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631PubMedCrossRefGoogle Scholar
  35. Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T et al (2014) The HOPS complex mediates autophagosome–lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 25:1327–1337PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL et al (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19:1242–1249PubMedPubMedCentralCrossRefGoogle Scholar
  37. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M et al (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kim YC, Guan KL (2015) mTOR: a pharmacologic target for autophagy regulation. J Clin Invest 125:25–32PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kim J, Kim YC, Fang C, Russell RC, Kim JH et al (2013) Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152:290–303PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kim YM, Jung CH, Seo M, Kim EK, Park JM et al (2015a) mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell 57:207–218PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kim JH, Hong SB, Lee JK, Han S, Roh K-H et al (2015b) Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11:75–87PubMedCrossRefPubMedCentralGoogle Scholar
  43. Klionsky DJ, Emr SD (2000) Cell biology—autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedPubMedCentralCrossRefGoogle Scholar
  44. Lazarus MB, Novotny CJ, Shokat KM (2015) Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem Biol 10:257–261PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lee KM, Hwang SK, Lee JA (2013) Neuronal autophagy and neurodevelopmental disorders. Experimental Neurobiol 22:133–142CrossRefGoogle Scholar
  46. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42PubMedCrossRefPubMedCentralGoogle Scholar
  47. Li X, Wang L, Zhou XE, Ke J, de Waal PW et al (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res 25:50–66PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ma M, Liu JJ, Li Y, Huang Y, Ta N et al (2017) Cryo-EM structure and biochemical analysis reveal the basis of the functional difference between human PI3KC3-C1 and -C2. Cell Res 27:989–1001PubMedPubMedCentralCrossRefGoogle Scholar
  49. Mack HI, Zheng B, Asara JM, Thomas SM (2012) AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8:1197–1214PubMedPubMedCentralCrossRefGoogle Scholar
  50. Matsui T, Jiang P, Nakano S, Sakamaki Y, Yamamoto H et al (2018) Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17. J Cell Biol 217:2633–2645PubMedPubMedCentralCrossRefGoogle Scholar
  51. McEwan DG, Popovic D, Gubas A, Terawaki S, Suzuki H et al (2015) PLEKHM1 regulates autophagosome-lysosome fusion through HOPS complex and LC3/GABARAP proteins. Mol Cell 57:39–54PubMedCrossRefPubMedCentralGoogle Scholar
  52. Mercer TJ, Gubas A, Tooze SA (2018) A molecular perspective of mammalian autophagosome biogenesis. J Biol Chem 293:5386–5395PubMedPubMedCentralCrossRefGoogle Scholar
  53. Metlagel Z, Otomo C, Takaesu G, Otomo T (2013) Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc Natl Acad Sci USA 110:18844–18849PubMedCrossRefPubMedCentralGoogle Scholar
  54. Michel M, Schwarten M, Decker C, Nagel-Steger L, Willbold D et al (2015) The mammalian autophagy initiator complex contains 2 HORMA domain proteins. Autophagy 11:2300–2308PubMedPubMedCentralCrossRefGoogle Scholar
  55. Munson MJ, Allen GFG, Toth R, Campbell DG, Lucocq JM et al (2015) mTOR activates the VPS34-UVRAG complex to regulate autolysosomal tubulation and cell survival. EMBO J 34:2272–2290PubMedPubMedCentralCrossRefGoogle Scholar
  56. Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416PubMedCrossRefPubMedCentralGoogle Scholar
  57. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K et al (2011) Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol Cell 44:462–475CrossRefGoogle Scholar
  58. Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M et al (2011) A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:376–389PubMedCrossRefPubMedCentralGoogle Scholar
  59. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA et al (2010) mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J 29:3939–3951PubMedPubMedCentralCrossRefGoogle Scholar
  60. Otomo C, Metlagel Z, Takaesu G, Otomo T (2013) Structure of the human ATG12 similar to ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20:59–U79PubMedCrossRefPubMedCentralGoogle Scholar
  61. Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T et al (2010) FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol 188:253–269PubMedPubMedCentralCrossRefGoogle Scholar
  62. Qi S, Kim DJ, Stjepanovic G, Hurley JH (2015) Structure of the human Atg13-Atg101 HORMA heterodimer: an interaction hub within the ULK1 complex. Structure. 23:1848–1857PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ragusa MJ, Stanley RE, Hurley JH (2012) Architecture of the Atg17 complex as a scaffold for autophagosome biogenesis. Cell 151:1501–1512PubMedPubMedCentralCrossRefGoogle Scholar
  64. Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO et al (2015) Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature 520:234–+PubMedCrossRefPubMedCentralGoogle Scholar
  65. Rasmussen MS, Mouilleron S, Shrestha BK, Wirth M, Lee R et al (2017) ATG4B contains a C-terminal LIR motif important for binding and efficient cleavage of mammalian orthologs of yeast Atg8. Autophagy 13:834–853CrossRefGoogle Scholar
  66. Ross FA, MacKintosh C, Hardie DG (2016) AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours. FEBS J 283:2987–3001PubMedPubMedCentralCrossRefGoogle Scholar
  67. Rostislavleva K, Soler N, Ohashi Y, Zhang L, Pardon E et al (2015) Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science 350:aac7365PubMedPubMedCentralCrossRefGoogle Scholar
  68. Satoo K, Noda NN, Kumeta H, Fujioka Y, Mizushima N et al (2009) The structure of Atg4B-LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J 28:1341–1350PubMedPubMedCentralCrossRefGoogle Scholar
  69. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976PubMedPubMedCentralCrossRefGoogle Scholar
  70. Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F et al (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433PubMedPubMedCentralCrossRefGoogle Scholar
  71. Settembre C, Zoncu R, Medina DL, Vetrini F, Erdin S et al (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108PubMedPubMedCentralCrossRefGoogle Scholar
  72. Shao D, Oka S, Liu T, Zhai P, Ago T et al (2014) A redox-dependent mechanism for regulation of AMPK activation by Thioredoxin1 during energy starvation. Cell Metab 19:232–245PubMedPubMedCentralCrossRefGoogle Scholar
  73. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA et al (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA 101:3329–3335PubMedCrossRefPubMedCentralGoogle Scholar
  74. Stolz A, Ernst A, Dikic I (2014) Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 16:495–501PubMedCrossRefGoogle Scholar
  75. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y et al (2005) Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J Biol Chem 280:40058–40065PubMedCrossRefGoogle Scholar
  76. Sutton RB, Fasshauer D, Jahn R, Brunger AT (1998) Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 395:347–353PubMedCrossRefPubMedCentralGoogle Scholar
  77. Suzuki H, Kaizuka T, Mizushima N, Noda NN (2015) Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22:572–580PubMedCrossRefPubMedCentralGoogle Scholar
  78. Tabata K, Matsunaga K, Sakane A, Sasaki T, Noda T et al (2010) Rubicon and PLEKHM1 negatively regulate the endocytic/autophagic pathway via a Novel Rab7-binding domain. Mol Biol Cell 21:4162–4172PubMedPubMedCentralCrossRefGoogle Scholar
  79. Takáts S, Glatz G, Szenci G, Boda A, Horváth GV et al (2018) Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion. PLoS Genet 14:e1007359PubMedPubMedCentralCrossRefGoogle Scholar
  80. Toyama EQ, Herzig S, Courchet J, Lewis Jr TL, Loson OC et al (2016) Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351:275–281PubMedPubMedCentralCrossRefGoogle Scholar
  81. Turco E, Witt M, Abert C, Bock-Bierbaum T, Su MY et al (2019) FIP200 claw domain binding to p62 promotes autophagosome formation at ubiquitin condensates. Mol CellGoogle Scholar
  82. Whitman M, Downes CP, Keeler M, Keller T, Cantley L (1988) Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature 332:644–646PubMedCrossRefPubMedCentralGoogle Scholar
  83. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233PubMedPubMedCentralCrossRefGoogle Scholar
  84. Xiao B, Sanders MJ, Carmena D, Bright NJ, Haire LF et al (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:3017PubMedPubMedCentralCrossRefGoogle Scholar
  85. Yamada Y, Suzuki NN, Hanada T, Ichimura Y, Kumeta H et al (2007) The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J Biol Chem 282:8036–8043PubMedCrossRefPubMedCentralGoogle Scholar
  86. Yamaguchi M, Matoba K, Sawada R, Fujioka Y, Nakatogawa H et al (2012a) Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat Struct Mol Biol 19:1250–+CrossRefGoogle Scholar
  87. Yamaguchi M, Noda NN, Yamamoto H, Shima T, Kumeta H et al (2012b) Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure 20:1244–1254PubMedCrossRefPubMedCentralGoogle Scholar
  88. Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H et al (2016) The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev Cell 38:86–99PubMedCrossRefPubMedCentralGoogle Scholar
  89. Yang H, Rudge DG, Koos JD, Vaidialingam B, Yang HJ et al (2013) mTOR kinase structure, mechanism and regulation. Nature 497:217–223PubMedPubMedCentralCrossRefGoogle Scholar
  90. Yang H, Wang J, Liu M, Chen X, Huang M et al (2016) 4.4 A Resolution Cryo-EM structure of human mTOR Complex 1. Protein Cell 7:878–887CrossRefGoogle Scholar
  91. Yang H, Jiang X, Li B, Yang HJ, Miller M et al (2017) Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 552:368–373PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yuan HX, Russell RC, Guan KL (2013) Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy 9:1983–1995PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Science Press and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Shanghai Institute of Organic Chemistry, Chinese Academy of SciencesShanghaiChina

Personalised recommendations