Advertisement

LT and Raptor Codes

  • K. Deergha RaoEmail author
Chapter
Part of the Forum for Interdisciplinary Mathematics book series (FFIM)

Abstract

To partially compensate for the inefficiency of random codes, we can use Reed–Solomon codes, and these codes can be decoded from a block with the maximum possible number of erasures in time quadratic in the dimension.

References

  1. 1.
    M. Luby, LT codes, in Proceeding of the 43rd Annual IEEE Symposium on Foundations of Computer Science, November 2002, pp. 271–282Google Scholar
  2. 2.
    A. Shokrollahi, Raptor codes. IEEE Trans. Inf. Theory 52(6), 2551–2567 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    T. J. Richardson, R. L. Urbanke, The capacity of low density parity check codes under message-passing decoding. IEEE Trans. Inf. Theory, 599–618 (2001)MathSciNetCrossRefGoogle Scholar
  4. 4.
    T.D. Nguyen, L.-L. Yang, L. Hanzo, Systematic Luby transform codes and their soft decoding, in IEEE SiPS’07, Shanghai, China, 17–19 October 2007, pp. 67–72Google Scholar
  5. 5.
    R. Gallager, Low density parity check codes. IRE Trans. Inf. Theory, 21–28 (1962)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ECEVasavi College of Engineering (Autonomous college affiliated to Osmania University)HyderabadIndia

Personalised recommendations