Skip to main content

Zinc Transporters and Zinc Signaling in Skin Formation and Diseases

  • Chapter
  • First Online:
Zinc Signaling

Abstract

The skin is the first body region to manifest zinc deficiency. Recent studies have revealed that the zinc transporters, especially zinc importers belonging to the Zrt-Irt-like (ZIP) family, play crucial roles in skin homeostasis. Fourteen ZIP members have been identified in humans, with at least 6 members being related to skin development and maintenance. ZIP1, ZIP2, ZIP4, and ZIP10 are associated with epidermal morphogenesis and disorders, whereas ZIP7 and ZIP13 are essential for dermis formation and collagen metabolism. Mouse models in combination with clinical data have shown the molecular pathogenic mechanisms involving ZIP members. Although other family members have not been well studied with respect to their role in the skin, their direct or indirect associations are also considerable and they are believed to be drug targets for skin diseases. Therefore, precise analysis and understanding of ZIP family members are indispensable for the care and treatment of skin disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aburto-Luna V, Trevino S, Santos-Lopez G et al (2017) Hepatic mobilization of zinc after an experimental surgery, and its relationship with inflammatory cytokines release, and expression of metallothionein and Zip14 transporter. Inflamm Res 66(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Andreini C, Banci L, Bertini I, Rosato A (2006) Counting the zinc-proteins encoded in the human genome. J Proteome Res 5(1):196–201

    Article  CAS  PubMed  Google Scholar 

  • Andrews GK (2008) Regulation and function of Zip4, the acrodermatitis enteropathica gene. Biochem Soc Trans 36(Pt 6):1242–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anzilotti C, Swan DJ, Boisson B et al (2019) An essential role for the Zn(2+) transporter ZIP7 in B cell development. Nat Immunol 20(3):350–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bin BH, Fukada T, Hosaka T et al (2011) Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome. J Biol Chem 286(46):40255–40265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bin BH, Hojyo S, Hosaka T et al (2014a) Molecular pathogenesis of spondylocheirodysplastic Ehlers-Danlos syndrome caused by mutant ZIP13 proteins. EMBO Mol Med 6(8):1028–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bin BH, Hojyo S, Ryong Lee T, Fukada T (2014b) Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS) and the mutant zinc transporter ZIP13. Rare Dis 2(1):e974982

    Article  PubMed  PubMed Central  Google Scholar 

  • Bin BH, Bhin J, Kim NH et al (2017a) An acrodermatitis enteropathica-associated Zn transporter, ZIP4, regulates human epidermal homeostasis. J Invest Dermatol 137(4):874–883

    Article  CAS  PubMed  Google Scholar 

  • Bin BH, Bhin J, Seo J et al (2017b) Requirement of zinc transporter SLC39A7/ZIP7 for dermal development to fine-tune endoplasmic reticulum function by regulating protein disulfide isomerase. J Invest Dermatol 137(8):1682–1691

    Article  CAS  PubMed  Google Scholar 

  • Bin BH, Bhin J, Takaishi M et al (2017c) Requirement of zinc transporter ZIP10 for epidermal development: implication of the ZIP10-p63 axis in epithelial homeostasis. Proc Natl Acad Sci U S A 114(46):12243–12248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bin BH, Hojyo S, Seo J et al (2018a) The role of the Slc39a family of zinc transporters in zinc homeostasis in skin. Nutrients 10(2):219

    Article  PubMed Central  CAS  Google Scholar 

  • Bin BH, Lee SH, Bhin J et al (2018b) The epithelial zinc transporter ZIP10 epigenetically regulates human epidermal homeostasis by modulating histone acetyltransferase activity. Br J Dermatol 180(4):869–880

    Article  PubMed  CAS  Google Scholar 

  • Bin BH, Seo J, Kim ST (2018c) Function, structure, and transport aspects of ZIP and ZnT zinc transporters in immune cells. J Immunol Res 2018:9365747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chowanadisai W (2014) Comparative genomic analysis of slc39a12/ZIP12: insight into a zinc transporter required for vertebrate nervous system development. PLoS One 9(11):e111535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chowanadisai W, Graham DM, Keen CL, Rucker RB, Messerli MA (2013) Neurulation and neurite extension require the zinc transporter ZIP12 (slc39a12). Proc Natl Acad Sci U S A 110(24):9903–9908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufner-Beattie J, Wang F, Kuo YM, Gitschier J, Eide D, Andrews GK (2003) The acrodermatitis enteropathica gene ZIP4 encodes a tissue-specific, zinc-regulated zinc transporter in mice. J Biol Chem 278(35):33474–33481

    Article  CAS  PubMed  Google Scholar 

  • Dufner-Beattie J, Weaver BP, Geiser J et al (2007) The mouse acrodermatitis enteropathica gene Slc39a4 (Zip4) is essential for early development and heterozygosity causes hypersensitivity to zinc deficiency. Hum Mol Genet 16(12):1391–1399

    Article  CAS  PubMed  Google Scholar 

  • Fukada T, Kambe T (2011) Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3(7):662–674

    Article  CAS  PubMed  Google Scholar 

  • Fukada T, Kambe T (eds) (2014) Zinc signals in cellular functions and disorders. Springer, Tokyo

    Google Scholar 

  • Fukada T, Civic N, Furuichi T et al (2008) The zinc transporter SLC39A13/ZIP13 is required for connective tissue development; its involvement in BMP/TGF-beta signaling pathways. PLoS One 3(11):e3642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukada T, Hojyo S, Hara T, Takagishi T (2019) Revisiting the old and learning the new of zinc in immunity. Nat Immunol 20(3):248–250

    Article  CAS  PubMed  Google Scholar 

  • Fukunaka A, Fukada T, Bhin J et al (2017) Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-β expression. PLoS Genet 13(8): e1006950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galvez-Peralta M, Wang Z, Bao S, Knoell DL, Nebert DW (2014) Tissue-specific induction of mouse ZIP8 and ZIP14 divalent cation/bicarbonate symporters by, and cytokine response to, inflammatory signals. Int J Toxicol 33(3):246–258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geiser J, Venken KJ, De Lisle RC, Andrews GK (2012) A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLoS Genet 8(6):e1002766

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giunta C, Elcioglu NH, Albrecht B et al (2008) Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome--an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82(6):1290–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golan Y, Kambe T, Assaraf YG (2017) The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Metallomics 9(10):1352–1366

    Article  CAS  PubMed  Google Scholar 

  • Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T (2017) Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci 67(2):283–301

    Article  CAS  PubMed  Google Scholar 

  • Hashemi M, Ghavami S, Eshraghi M, Booy EP, Los M (2007) Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. Eur J Pharmacol 557(1):9–19

    Article  CAS  PubMed  Google Scholar 

  • Hogstrand C, Kille P, Nicholson RI, Taylor KM (2009) Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol Med 15(3):101–111

    Article  CAS  PubMed  Google Scholar 

  • Hojyo S, Miyai T, Fujishiro H et al (2014) Zinc transporter SLC39A10/ZIP10 controls humoral immunity by modulating B-cell receptor signal strength. Proc Natl Acad Sci U S A 111(32):11786–11791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homma K, Fujisawa T, Tsuburaya N et al (2013) SOD1 as a molecular switch for initiating the homeostatic ER stress response under zinc deficiency. Mol Cell 52(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Hurley LS, Lonnerdal B, Stanislowski AG (1979) Zinc citrate, human milk, and acrodermatitis enteropathica. Lancet 1(8117):677–678

    Article  CAS  PubMed  Google Scholar 

  • Huse M, Eck MJ, Harrison SC (1998) A Zn2+ ion links the cytoplasmic tail of CD4 and the N-terminal region of Lck. J Biol Chem 273(30):18729–18733

    Article  CAS  PubMed  Google Scholar 

  • Hwang JJ, Kim HN, Kim J et al (2010) Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 23(6):997–1013

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Hasegawa S, Ban S et al (2014) ZIP2 protein, a zinc transporter, is associated with keratinocyte differentiation. J Biol Chem 289(31):21451–21462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Itsumura N, Inamo Y, Okazaki F et al (2013) Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. PLoS One 8(5):e64045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagara N, Tanaka N, Noguchi S, Hirano T (2007) Zinc and its transporter ZIP10 are involved in invasive behavior of breast cancer cells. Cancer Sci 98(5):692–697

    Article  CAS  PubMed  Google Scholar 

  • Kambe T, Andrews GK (2009) Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol Cell Biol 29(1):129–139

    Article  CAS  PubMed  Google Scholar 

  • Kury S, Dreno B, Bezieau S et al (2002) Identification of SLC39A4, a gene involved in acrodermatitis enteropathica. Nat Genet 31(3):239–240

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Hennigar SR, Alam S, Nishida K, Kelleher SL (2015) Essential role for zinc transporter 2 (ZnT2)-mediated zinc transport in mammary gland development and function during lactation. J Biol Chem 290(21):13064–13078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lioumi M, Ferguson CA, Sharpe PT et al (1999) Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex. Genomics 62(2):272–280

    Article  CAS  PubMed  Google Scholar 

  • Liu MJ, Bao S, Galvez-Peralta M et al (2013) ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep 3(2):386–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui C, Takatani-Nakase T, Hatano Y, Kawahara S, Nakase I, Takahashi K (2017) Zinc and its transporter ZIP6 are key mediators of breast cancer cell survival under high glucose conditions. FEBS Lett 591(20):3348–3359

    Article  CAS  PubMed  Google Scholar 

  • Maverakis E, Fung MA, Lynch PJ et al (2007) Acrodermatitis enteropathica and an overview of zinc metabolism. J Am Acad Dermatol 56(1):116–124

    Article  PubMed  Google Scholar 

  • Michaelsson G (1990) Acrodermatitis enteropathica: zinc in epidermis in relation to changes in dosage of zinc. Acta Derm Venereol 70(1):90–91

    CAS  PubMed  Google Scholar 

  • Miyai T, Hojyo S, Ikawa T et al (2014) Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Proc Natl Acad Sci U S A 111(32):11780–11785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano A, Nakano H, Nomura K, Toyomaki Y, Hanada K (2003) Novel SLC39A4 mutations in acrodermatitis enteropathica. J Invest Dermatol 120(6):963–966

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Kawamura T, Shimada S (2016) Zinc and skin biology. Arch Biochem Biophys 611:113–119

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Kinoshita M, Shimada S, Kawamura T (2018) Zinc and skin disorders. Nutrients 10(2):199

    Article  PubMed Central  CAS  Google Scholar 

  • Ogawa Y, Kinoshita M, Shimada S, Kambe T, Kawamura T (2019) Zinc transporters in the epidermis. J Dermatol 46(7):e243–e245

    Article  PubMed  Google Scholar 

  • Peters JL, Dufner-Beattie J, Xu W et al (2007) Targeting of the mouse Slc39a2 (Zip2) gene reveals highly cell-specific patterns of expression, and unique functions in zinc, iron, and calcium homeostasis. Genesis 45(6):339–352

    Article  CAS  PubMed  Google Scholar 

  • Prasad AS (2014) Impact of the discovery of human zinc deficiency on health. J Trace Elem Med Biol 28(4):357–363

    Article  CAS  PubMed  Google Scholar 

  • Sayadi A, Nguyen AT, Bard FA, Bard-Chapeau EA (2013) Zip14 expression induced by lipopolysaccharides in macrophages attenuates inflammatory response. Inflamm Res 62(2):133–143

    Article  CAS  PubMed  Google Scholar 

  • Simpson M, Xu Z (2006) Increased abundance of labile intracellular zinc during cell proliferation was due to increased retention of extracellular zinc in 3T3 cells. J Nutr Biochem 17(8):541–547

    Article  CAS  PubMed  Google Scholar 

  • Takagishi T, Hara T, Fukada T (2017) Recent advances in the role of SLC39A/ZIP zinc transporters in vivo. Int J Mol Sci 18(12)

    Article  PubMed Central  CAS  Google Scholar 

  • Tasman-Jones C, Kay RG (1975) Letter: zinc deficiency and skin lesions. N Engl J Med 293(16):830

    CAS  PubMed  Google Scholar 

  • Taylor KM, Hiscox S, Nicholson RI, Hogstrand C, Kille P (2012) Protein kinase CK2 triggers cytosolic zinc signaling pathways by phosphorylation of zinc channel ZIP7. Sci Signal 5(210):ra11

    PubMed  PubMed Central  Google Scholar 

  • Tucker SB, Schroeter AL, Brown PW Jr, McCall JT (1976) Acquired zinc deficiency. Cutaneous manifestations typical of acrodermatitis enteropathica. JAMA 235(22):2399–2402

    Article  CAS  PubMed  Google Scholar 

  • Walravens PA, Hambidge KM, Neldner KH et al (1978) Zinc metabolism in acrodermatitis enteropathica. J Pediatr 93(1):71–73

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Kim BE, Dufner-Beattie J, Petris MJ, Andrews G, Eide DJ (2004) Acrodermatitis enteropathica mutations affect transport activity, localization and zinc-responsive trafficking of the mouse ZIP4 zinc transporter. Hum Mol Genet 13(5):563–571

    Article  CAS  PubMed  Google Scholar 

  • Wolf R, Howard OM, Dong HF et al (2008) Chemotactic activity of S100A7 (Psoriasin) is mediated by the receptor for advanced glycation end products and potentiates inflammation with highly homologous but functionally distinct S100A15. J Immunol 181(2):1499–1506

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Fukada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bin, BH., Lee, MG., Hara, T., Takagishi, T., Fukada, T. (2019). Zinc Transporters and Zinc Signaling in Skin Formation and Diseases. In: Fukada, T., Kambe, T. (eds) Zinc Signaling. Springer, Singapore. https://doi.org/10.1007/978-981-15-0557-7_15

Download citation

Publish with us

Policies and ethics