Advertisement

Genetic Alterations of Pediatric Acute Lymphoblastic Leukemia

  • Toshihiko ImamuraEmail author
Chapter

Abstract

Recent genetic studies of pediatric acute lymphoblastic leukemia (ALL), both in B cell precursor and T cell ALL (B/T-ALL), clarified the landscape of genetic alterations due to great progress of comprehensive genome sequencing technologies including next generation sequencing. These studies revealed genetic alterations such as somatic structural DNA rearrangement and sequence mutations that affect multiple pathways including lymphocyte development, cytokine signaling, JAK-STAT pathway, MAP kinase and RAS signaling pathway, transcriptional, and epigenetic regulation to provide us new insight of leukemogenesis of pediatric B/T-ALL. In addition, recent comprehensive genetic studies of paired diagnostic and relapse samples clarified the mechanism of clonal evolution of leukemic cells to provide novel insights of mechanism of therapeutic resistance of pediatric ALL. Owing to huge success of genetic studies, several new subtypes of pediatric ALL have been identified, and some of them are clinically important to be candidate of targeted therapy. Here, we provide a review of recent genetic studies of pediatric ALL including B/T-ALL, acute leukemia ambiguous lineage, and relapsed ALL and discuss the importance of genetic basis of pediatric ALL.

Keywords

Pediatric acute lymphoblastic leukemia Genetic basis Genetic analysis Chromosomal translocation Genetic alteration 

References

  1. 1.
    Iacobucci I, Mullighan CG. Genetic basis of acute lymphoblastic leukemia. J Clin Oncol. 2017;35:975–83.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ziemin-van der Poel S, McCabe NR, Gill HJ, et al. Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci U S A. 1991;88(23):10735–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yu BD, Hess JL, Horning SE, et al. Altered Hox expression and segmental identity in Mll-mutant mice. Nature. 1995;378(6556):505–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Milne TA, Briggs SD, Brock HW, et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell. 2002;10(5):1107–17.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Zhang Y, Chen A, Yan XM, et al. Disordered epigenetic regulation in MLL-related leukemia. Int J Hematol. 2012;96:428–37.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Okada Y, Feng Q, Lin Y, et al. hDot1L links histone methylation to leukemogenesis. Cell. 2005;121:167–78.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Zhang W, Xia X, Reisenauer MR, et al. Dot1a-AF9 complex mediates histone H3 Lys-79 hypermethylation and repression of ENaCalpha in an aldosterone-sensitive manner. J Biol Chem. 2006;281:18059–68.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Krivtsov AV, Feng Z, Lemieux ME, et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell. 2008;14:355–68.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet. 2007;370(9583):240–50.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478:529–33.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Daigle SR, Olhava EJ, Therkelsen CA, et al. Selective killing of mixed-lineage leukemia cells by a potent small-molecule Dot1L inhibitor. Cancer Cell. 2011;20:53–65.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukemia. Lancet. 2013;381:1943–55.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Piette C, Suciu S, Clappier E, Bertrand Y, Drunat S, Girard S, et al. Differential impact of drugs on the outcome of ETV6-RUNX1 positive childhood B-cell precursor acute lymphoblastic leukemia: results of the EORTC CLG 58881 and 58951 trials. Leukemia. 2018;32:244–8.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Usami I, Imamura T, Takahashi Y, Suenobu SI, Hasegawa D, Hashii Y, et al. Discontinuation of L-asparaginase and poor response to prednisolone are associated with poor outcome of ETV6-RUNX1-positive pediatric B-cell precursor acute lymphoblastic leukemia. Int J Hematol. 2019;109(4):477–82.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kuster L, Grausenburger R, Fuka G, Kaindl U, Krapf G, Inthal A, et al. ETV6/RUNX1-positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood. 2011;117:2658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kawamata N, Ogawa S, Zimmermann M, Kato M, Sanada M, Hemminki K, et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high-resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood. 2008;111:776–84.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sutcliffe MJ, Shuster JJ, Sather HN, Camitta BM, Pullen J, Schultz KR, et al. High concordance from independent studies by the children’s cancer group (CCG) and pediatric oncology group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI standard-risk B-precursor acute lymphoblastic leukemia: a children’s oncology group (COG) initiative. Leukemia. 2005;19:734–40.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kato M, Imamura T, Manabe A, Hashii Y, Koh K, Sato A, et al. Prognostic impact of gained chromosomes in high-hyperdiploid childhood acute lymphoblastic leukaemia: a collaborative retrospective study of the Tokyo children’s cancer study group and Japan Association of Childhood Leukaemia Study. Br J Haematol. 2014;166(2):295–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Paulsson K, Lilljebjörn H, Biloglav A, et al. The genomic landscape of high hyperdiploid childhood acute lymphoblastic leukemia. Nat Genet. 2015;47:672–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Moorman AV, Ensor HM, Richards SM, Chilton L, Schwab C, Kinsey SE, et al. Prognostic effect of chromosomal abnormalities in childhood B cell precursor acute lymphoblastic leukaemia: results from the UK medical research council ALL97/99 randomized trial. Lancet Oncol. 2010;11:429–38.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Asai D, Imamura T, Yamashita Y, Suenobu S, Moriya-Saito A, Hasegawa D, et al. Outcome of TCF3-PBX1 positive pediatric acute lymphoblastic leukemia patients in Japan: a collaborative study of Japan Association of Childhood Leukemia Study (JACLS) and Children’s Cancer and leukemia study group (CCLSG). Cancer Med. 2014;3(3):623–31.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hunger SP. Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood. 1996;87:1211–24.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Fischer U, Forster M, Rinaldi A, Risch T, Sungalee S, Warnatz HJ, et al. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options. Nat Genet. 2015;47(9):1020–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Nachman JB, Heerema NA, Sather H, et al. Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood. 2007;110:1112–5.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Holmfeldt L, Wei L, Diaz-Flores E, Walsh M, Zhang J, Ding L, et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat Genet. 2013;45(3):242–52.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Qian M, Cao X, Devidas M, Yang W, Cheng C, Dai Y, et al. TP53 Germline variations influence the predisposition and prognosis of B-cell acute lymphoblastic leukemia in children. J Clin Oncol. 2018;36(6):591–9.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children’s Oncology Group Study AALL0031. Leukemia. 2014;28(7):1467–71.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Mullighan CG, Goorha S, Radtke I, et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 2007;446(7137):758–64.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360(5):470–80.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Dörge P, Meissner B, Zimmermann M, Möricke A, Schrauder A, Bouquin JP, et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica. 2013;98(3):428–32.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Asai D, Imamura T, Suenobu S, Saito A, Hasegawa D, Deguchi T, et al. IKZF1 deletion is associated with a poor outcome in pediatric B-cell precursor acute lymphoblastic leukemia in Japan. Cancer Med. 2013;2(3):412–9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114(13):2688–98.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mullighan CG, Collins-Underwood JR, Phillips LA, Loudin MG, Liu W, Zhang J, et al. Rearrangement of CRLF2 in B-progenitor- and down syndrome-associated acute lymphoblastic leukemia. Nat Genet. 2009;41(11):1243–6.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Den Boer ML, van Slegtenhorst M, De Menezes RX, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–34.CrossRefGoogle Scholar
  35. 35.
    Roberts KG, Morin RD, Zhang J, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Roberts KG, Li Y, Payne-Turner D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371(11):1005–15.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Weston BW, Hayden MG, Roberts KG, et al. Tyrosine kinase inhibitor therapy induces renission in a patients with refractory EBF1-PDGFRB-positive acute lymphoblastic leukemia. J Clin Oncol. 2013;31(25):e413–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Imamura T, Kiyokawa N, Kato M, Imai C, Okamoto Y, Yano M, et al. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J. 2016;6:e419.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Harewood L, Robinson H, Harris R, Al-Obaidi MJ, Jalali GR, Martineau M, et al. Leukemia. 2003;17:547–53.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Moorman AV, Richards SM, Robinson HM, Strefford JC, Gibson BE, Kinsey SE, et al. Prognosis of children with acute lymphoblastic leukemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood. 2007;109(6):2327–30.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Heerema NA, Carroll AJ, Devidas M, Loh ML, Borowitz MJ, Gastier-Foster JM, et al. Intrachromosomal amplification of chromosome 21 is associated with inferior outcomes in children with acute lymphoblastic leukemia treated in contemporary standard-risk children’s oncology group studies: a report from the children's oncology group. J Clin Oncol. 2013;31(27):3397–402.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Suzuki K, Okuno Y, Kawashima N, Muramatsu H, Okuno T, Wang X, et al. MEF2D-BCL9 fusion gene is associated with high-risk acute B-cell precursor lymphoblastic leukemia in adolescents. J Clin Oncol. 2016;34(28):3451–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gu Z, Churchman M, Roberts K, Li Y, Liu Y, Harvey RC, et al. Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia. Nat Commun. 2016;7:13331.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ohki K, Kiyokawa N, Saito Y, Hirabayashi S, Nakabayashi K, Ichikawa H, et al. Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion. Haematologica. 2019;104(1):128–37.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lilljebjörn H, Fioretos T. New oncogenic subtypes in pediatric B-cell precursor acute lymphoblastic leukemia. Blood. 2017;130(12):1395–401.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Hirabayashi S, Ohki K, Nakabayashi K, Ichikawa H, Momozawa Y, Okamura K, et al. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica. 2017;102(1):118–29.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Yasuda T, Tsuzuki S, Kawazu M, et al. Recurrent DUX4 fusions in B cell acute lymphoblastic leukemia of adolescents and young adults. Nat Genet. 2016;48:569–74.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Zhang J, McCastlain K, Yoshihara H, et al. Deregulation of DUX4 and ERG in acute lymphoblastic leukemia. Nat Genet. 2016;48:1481–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Clappier E, Auclerc MF, Rapion J, et al. An intragenic ERG deletion is a marker of an oncogenic subtype of B-cell precursor acute lymphoblastic leukemia with a favorable outcome despite frequent IKZF1 deletions. Leukemia. 2014;28:70–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Gu Z, Churchman ML, Roberts KG, Moore I, Zhou X, Nakitandwe J, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296–307.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Andersson AK, Ma J, Wang J, et al. St. Jude Children’s research hospital–Washington university pediatric cancer genome project. The landscape of somatic mutations in infant MLL rearranged acute lymphoblastic leukemias. Nat Genet. 2015;47(4):330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Petit A, Trinquand A, Chevret S, Ballerini P, Cayuela JM, Grardel N, et al. Oncogenetic mutations combined with MRD improve outcome prediction in pediatric T-cell acute lymphoblastic leukemia. Blood. 2018;131(3):289–300.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ferrando AA, Neuberg DS, Staunton J, et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1:75–87.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Weng AP, Ferrando AA, Lee W, et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 2004;306:269–71.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10:147–56.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zhang J, Ding L, Holmfeldt L, et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481:157–63.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Patrick K, Wade R, Goulden N, et al. Outcome for children and young people with early T-cell precursor acute lymphoblastic leukaemia treated on a contemporary protocol, UKALL 2003. Br J Haematol. 2014;166:421–4.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mansour MR, Abraham BJ, Anders L, et al. Oncogene regulation: an oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science. 2014;346:1373–7.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Seki M, Kimura S, Isobe T, Yoshida K, Ueno H, Nakajima-Takagi Y, et al. Recurrent SPI1 (PU.1) fusions in high-risk pediatric T cell acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Gerr H, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J Haematol. 2010;149:84–92.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Alexander TB, Gu Z, Iacobucci I, Dickerson K, Choi JK, Xu B, et al. The genetic basis and cell of origin of mixed phenotype acute leukaemia. Nature. 2018;562(7727):373–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mullighan CG, Phillips LA, Su X, et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science. 2008;322:1377–80.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011;471:235–9.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Meyer JA, Wang J, Hogan LE, et al. Relapse-specific mutations in NT5C2 in childhood acute lymphoblastic leukemia. Nat Genet. 2013;45:290–4.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ma X, Edmonson M, Yergeau D, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun. 2015;6:6604.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Spinella JF, Richer C, Cassart P, Ouimet M, Healy J, Sinnett D. Mutational dynamics of early and late relapsed childhood ALL: rapid clonal expansion and long-term dormancy. Blood Adv. 2018;2(3):177–88.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Irving J, Matheson E, Minto L, et al. Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 2014;124:3420–30.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Jerchel IS, Hoogkamer AQ, Ariës IM, Steeghs EMP, Boer JM, Besselink NJM, et al. RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia. 2018;32(4):931–40.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of PediatricsKyoto Prefectural University of Medicine, Graduate School of Medical ScienceKyotoJapan

Personalised recommendations