Advertisement

Despeckle Filtering of Medical Ultrasonic Images Using Wavelet and Guided Filter

  • Ju ZhangEmail author
  • Yun Cheng
Chapter

Abstract

In this chapter, a new de-noising method based on an improved wavelet filter and guided filter is presented. The Bayesian maximum a posteriori estimation is applied to obtain a wavelet shrinkage algorithm. The coefficients of the low frequency sub-band in the wavelet domain are filtered by guided filter. The filtered image is then obtained by using the inverse wavelet transformation. Experiments with the comparison of the other seven de-speckling filters are conducted. The results show that the proposed method not only has a strong de-speckling ability, but also keeps the image details, such as the edge of a lesion.

References

  1. 1.
    N. Gupta, M.N.S. Swamy, E. Plotkin, Despeckling of medical ultrasound images using data and rate adaptive lossy compression. IEEE Trans. Med. Ima. 24(6), 743–754 (2005).  https://doi.org/10.1109/TMI.2005.847401CrossRefGoogle Scholar
  2. 2.
    P. Coupé, P. Hellier, C. Kervrann et al., Nonlocal means-based speckle filtering for ultrasound Images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009).  https://doi.org/10.1109/TIP.2009.2024064MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    F.D. Guan, P. Ton, S.P. Ge et al., Anisotropic diffusion filtering for ultrasound speckle reduction. Sci. China Tech. Sci. 57, 607–614 (2014).  https://doi.org/10.1007/s11431-014-5483-7CrossRefGoogle Scholar
  4. 4.
    R. Wagner, S. Smith, J. Sandrik, H. Lopez, Statistics of speckle in ultrasound Bscans. IEEE Trans. Son. Ultra. 3(1), 156–163 (1983)CrossRefGoogle Scholar
  5. 5.
    C. Tomasi, R. Manduchi, Bilateral filtering for gray and color images, in Sixth International Conference on Computer Vision, vol. 7, no 4 (Bombay, India, 1998), pp. 839–846Google Scholar
  6. 6.
    S. Balocco, C. Gatta, O. Pujol et al., SRBF: speckle reducing bilateral filtering. Ultrasound Med. Biol. 36(8), 1353–1363 (2010)CrossRefGoogle Scholar
  7. 7.
    N. Damodaran, S. Ramamurthy, S. Velusamy et al., Speckle noise reduction in ultrasound biomedical B-scan images using discrete topological derivative. Ultrasound Med. Biol. 38(2), 276–286 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Yu, J. Tan, Y. Wang, Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method. Pattern Recog. 43, 3083–3092 (2010).  https://doi.org/10.1016/j.patcog.2010.04.006
  9. 9.
    K. Krissian, C. Westin, R. Kikinis, et al., Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Proce. 16(5) 1412–1424 (2007).  https://doi.org/10.1109/tip.2007.891803
  10. 10.
    E.K. Abd, A. Youssef, Y. Kadah, Real-Time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans. Bio. Eng. 49(9), 997–1014 (2002). http://dx.doi.org/10.1109/TBME.2002.802051
  11. 11.
    M.F. Insana, R.F. Wagner, B.S. Garra, D.G. Brown, T.H. Shawker, Analysis of ultrasound image texture via generalized Rician statistics. Opt. Eng. 25(6), 743–748 (1986)CrossRefGoogle Scholar
  12. 12.
    P.M. Shankar, A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 47(1), 727–736 (2000)CrossRefGoogle Scholar
  13. 13.
    D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. Finn, M. Glavin, E. Jones, Echocardiographic speckle reduction comparison. IEEE Trans. Ultra., Ferr. Freq. Con. 58(1), 82–101 (2011).  https://doi.org/10.1109/tuffc.2011.1776
  15. 15.
    Z. Wang, A.C. Bovik, H.R. Sheikh, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004).  https://doi.org/10.1109/TIP.2003.819861CrossRefGoogle Scholar
  16. 16.
    B. Kozintsev, B. Kedem, Generation of similar images from a given discrete image. J. Comput. Graphical Statist. 9(2), 286–302 (2000)MathSciNetGoogle Scholar
  17. 17.
    Y. Yu, S.T. Acton, Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    W.G. Flores, W.C. de Albuquerque Pereira, A.F.C. Infantosi, Breast ultrasound despeckling using anisotropic diffusion guided by texture descriptors. Ultrasound Med. Biol. 40, 2609–2621 (2014)Google Scholar
  19. 19.
    A. Mittal, R. Soundararajan, A.C. Bovik, Making a ‘Completely Blind’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Zhijiang College of Zhejiang University of TechnologyShaoxingChina
  2. 2.Department of UltrasoundZhejiang HospitalHangzhouChina

Personalised recommendations