Advertisement

Fault Diagnosis System Using Smartphone

  • Nishchal K. VermaEmail author
  • Al Salour
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 256)

Abstract

This chapter presents an Android application of a general-purpose fault diagnosis system developed earlier for desktop and Palmtop. The basic methodology of fault recognition using Android is similar to the methods discussed in Chap.  8. This chapter first describes the data mining model used for the fault diagnosis purpose and then presents summarized theories of all the modules covered in the previous chapter. A detailed description about the development and usage of smartphone with Android application for fault diagnosis is provided in this chapter.

References

  1. 1.
    Verma, N.K., Sarkar, S., Dixit, S., Sevakula, R.K., Salour, A.: Android app for intelligent CBM. In: 22nd IEEE Symposium on Industrial Electronics, Taipei, Taiwan, pp. 1–6 (2013)Google Scholar
  2. 2.
    Verma, N.K., Sevakula, R.K., Dixit, S., Salour, A.: Intelligent condition based monitoring using acoustic signals for air compressors. IEEE Trans. Reliab. 65(1), 291–309 (2016)CrossRefGoogle Scholar
  3. 3.
    Verma, N.K., Sevakula, R.K., Dixit, S., Salour, A.: Data driven approach for drill bit monitoring. IEEE Rel. Mag. 19–26 (2015)Google Scholar
  4. 4.
    Verma, N.K., Singh, J.V., Gupta, M., Dixit, S., Sevakula, R.K., Salour, A.: Windows mobile and tablet app for acoustic signature based machine health monitoring. In: 9th IEEE Conference on Industrial and Information Systems, Gwalior, India, pp. 1–6 (2014)Google Scholar
  5. 5.
    Verma, N.K., Singh, S., Gupta, J.K., Sevakula, R.K., Dixit, S., Salour, A.: Smartphone application for fault recognition. Int. J. Smart Sens. Intell. Syst. 6(4), 1763–1782 (2013)Google Scholar
  6. 6.
    Wave PCM Soundfile Format: Available at https://ccrma.stanford.edu/courses/422/projects/WaveFormat/. Accessed June 2014
  7. 7.
    WasApiAudioComp Package: Available at https://github.com/nokiadeveloper/audio-recorder/tree/master/WasapiAudioComp. Accessed June 2014
  8. 8.
    NAudio Library: Available at http://naudio.codeplex.com/. Accessed May 2014
  9. 9.
    Verma, N.K., Kumar, P., Sevakula, R.K., Dixit, S., Salour, A.: Ranking of sensitive positions based on statistical parameters and cross correlation analysis. In: 6th IEEE International Conference on Sensing Technology, Kolkata, India, pp. 815–821 (2012)Google Scholar
  10. 10.
    Lambrou, T., Kudumakis, P., Speller, R., Sandler, M., Linney, A.: Classification of audio signals using statistical features on time and wavelet transform domains. In: Proceedings of IEEE International Conference Acoustics, Speech and Signal Processing, Washington, USA, 6, 3621–3624 (1998)Google Scholar
  11. 11.
  12. 12.
    Math.Net Package: Available at https://www.nuget.org/packages/MathNet.Numerics. Accessed May 2014
  13. 13.
    Microsoft Phone Controls Toolkit: Available at http://phone.codeplex.com/. Accessed May 2014
  14. 14.
    Commons Math Developers: Apache Commons Math, Release 2.2. Available: http://commons.apache.org/math. Accessed June 2014
  15. 15.
    Nuget Package Gallery: Available at https://www.nuget.org/. Accessed May 2014
  16. 16.
    Verma, N.K., Singh, S., Gupta, J.K., Sevakula, R.K., Dixit, S., Salour, A.: Smartphone application for fault recognition. In: 6th International Conference on Sensing Technology, Kolkata, India, pp. 1–6 (2012)Google Scholar
  17. 17.
    Windows Phone Power Tools 2.5.5: Available at http://wptools.codeplex.com/. Accessed May 2014
  18. 18.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Tech. 2(3), 27 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Inter-disciplinary Program in Cognitive ScienceIndian Institute of Technology KanpurKanpurIndia
  2. 2.Boeing Research and TechnologySaint LouisUSA

Personalised recommendations