A Proposed Method for the Use of the IBIS-FS in Experimental Modal Analysis of Buildings

  • Massoud Sofi
  • Elisa Lumantarna
  • Priyan Mendis
  • Lihai ZhangEmail author


This chapter attempts to simplify experimental modal analysis for use in structural health monitoring through remote sensing of vibrations using the microwave interferometry technology. The commercially available Image By Interferometric Survey-Frequency for Structures (IBIS-FS) radar has been used in bridge and historical building monitoring with comparable results to accelerometers. In this chapter, a repeatable method for experimental modal analysis of a high-rise building with an irregular plan using the IBIS-FS is presented.


IBIS-FS High-rise building Experimental modal analysis 


  1. 1.
    Pieraccini, M., Fratini, M., Parrini, F., Atzeni, C., Bartoli, G.: Interferometric radar vs. accelerometer for dynamic monitoring of large structures: an experimental comparison. NDT & E Int. 258–264 (2008)Google Scholar
  2. 2.
    Gentile, C., Crosetto, M.: Radar-based operational modal testing of large structures, two case studies in Spain. In: 6th International Operational Modal Analysis Conference. Gijon (2015)Google Scholar
  3. 3.
    Balageas, D.: Introduction to structural health monitoring. In: Balageas, D., Fritzen, C.-P., Güemes, A. (eds.) Structural Health Monitoring. London, UK, ISTE (2006)Google Scholar
  4. 4.
    Stabile, T.A., Perrone, A., Gallipoli, M.R., Giocoli, A., Pignatti, S., Palombo, A., Pascucci, S.: Joint application of non-invasive techniques to characterise the dynamic behaviour of engineering structures. In: Proceedings of 15 WCEE, Lisbon (2012)Google Scholar
  5. 5.
    Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)CrossRefGoogle Scholar
  6. 6.
    Salawu, O.S.: Detection of structural damage through changes in frequency: a review. Eng. Struct. 19(9), 718–723 (1997)CrossRefGoogle Scholar
  7. 7.
    Begg, R.D., Mackenzie, A.C., Dodds, C.J., Loland, O.: Structural integrity monitoring using digital processing of vibration signals. In: Proceedings, 8th Offshore Technology Conference, 3–6 May, Houston, Texas 2 (1994)Google Scholar
  8. 8.
    Poovarodom, N., Charoenpong, K.: Identification of dynamic properties of low-rise RC building by ambient vibration measurements during construction. In: The 14th World Conference on Earthquake Engineering, pp. 1–8. Beijing (2008)Google Scholar
  9. 9.
    Ren, W.-X., Zong, Z.-H.: Output-only modal parameter identification of civil engineering structures. Struct. Eng. Mech. 17(3–4), 429–444 (2004)CrossRefGoogle Scholar
  10. 10.
    Peeters, B., Roeck, G.D.: Reference-based Stochastic subspace identification for output-only modal analysis. Mech. Syst. Signal Process. 13(6), 855–878 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Yu, E., Skolnik, D., Whang, D.H., Wallace, J.W.: Forced vibration testing of a four-story RC building utilizing the nees@UCLA mobile field laboratory. In: Proceedings of the 8th U.S. National Conference on Earthquake Engineering (2006)Google Scholar
  12. 12.
    Schwarz, B.J., Richardson, M.H.: Experimental Modal Analysis. CSI Reliability Week (1999)Google Scholar
  13. 13.
    Avitabile, P.: Experimental modal analysis: a simple non-mathematical presentation. Sound Vib. 35(1), 20–31 (2001)Google Scholar
  14. 14.
    Diaferio, M., Foti, D., Giannoccaro, N.I.: Identification of the modal properties of a building of the Greek heritage. Key Eng. Mater. 628, 150–159 (2015)CrossRefGoogle Scholar
  15. 15.
    Simkin, G.B., Beskhyroun, S., Ma, Q.T., Wotherspoon, L.M., Ingham, J.M.: Experimental modal analyses of buildings during the Cook Strait earthquake sequence (2014)Google Scholar
  16. 16.
    Cunha, Á., Caetano, E., Magalhães, F., Moutinho, C.: From input-output to output-only modal identification of civil engineering structures. SAMCO (Structural Assessment, Monitoring and Control) (2006)Google Scholar
  17. 17.
    Bendat, J., Piersol, A.: Engineering Applications of Correlation and Spectral Analysis. Wiley, New York, NY (1993)zbMATHGoogle Scholar
  18. 18.
    Hoa, L.T., Tamura, Y., Yoshida, A., Anh, N.D.: Frequency domain versus time domain modal identifications for ambient excited structures. In: International Conference on Engineering Mechanics and Automation (ICEMA), pp. 1–2 (2010)Google Scholar
  19. 19.
    Brincker, R., Ventura, C., Andersen, P.: Damping estimation by frequency domain decomposition. In: 19th International Modal Analysis Conference, vol. 9, pp. 698–703 (2001)Google Scholar
  20. 20.
    Magalhães, F., Caetano, E., Cunha, Á.: Challenges in the application of Stochastic modal identification methods to a cable-stayed bridge. J. Bridge Eng. 12(6), 746–754 (2007)CrossRefGoogle Scholar
  21. 21.
    Andersen, P., Brincker, R., Kirkegaard, P.H.: Theory of covariance equivalent ARMAV models of civil engineering structures. In: Proceedings-SPIE the International Society for Optical Engineering, SPIE International Society for Optical, pp. 518–524 (1996)Google Scholar
  22. 22.
    Bodeux, J.B., Golinval, J.C.: Application of ARMAV models to the identification and damage detection of mechanical and civil engineering structures. Smart Mater. Struct. 10(3), 479–489 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    Chauhan, S.: Subspace algorithms in modal parameter estimation for operational modal analysis, perspectives and practices. In: Proceedings of the IMAC XXXIV a conference and Exposition on Structural Dynamics. Orlando (2016)Google Scholar
  24. 24.
    Taylor, J.D.: Ultra-Wideband Radar Technology. CRC Press (2001)Google Scholar
  25. 25.
    Henderson, F.M., Lewis, A.J.: Manual of remote sensing. In: Principles and Applications of Imaging Radar, 3rd ed. Wiley and Sons (1998)Google Scholar
  26. 26.
    Gentile, C., Bernardini, G.: Radar-based measurement of deflections on bridges and large structures. Eur. J. Environ. Civil Eng. 14(4), 495–516 (2010)CrossRefGoogle Scholar
  27. 27.
    Gentile, C.: Radar-based measurement of deflections on bridges and large structures, advantages, limitations and possible applications. In: IV ECCOMAS Thematic Conference on Smart Structures and Materials, Porto, pp. 1–20 (2009)Google Scholar
  28. 28.
    Ingegneria Dei Sistemi, IBIS Surveyor v.01.00-User Manual. Pisa, Italy (2013)Google Scholar
  29. 29.
    Benedettini, F., Gentile, C.: FE modelling of a cable-stayed bridge based on operational modal analysis. In: Proceedings of the IMAC XXVI, a Conference and Exposition on Structural Dynamics (2008)Google Scholar
  30. 30.
    Pieraccini, M., Fratini, M., Parrini, F., Pinelli, G., Atzeni, C.: Dynamic survey of architectural heritage by high-speed microwave interferometry. IEEE Geosci. Remote Sens. Lett. 2, 28–30 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    Atzeni, C., Bicci, A., Dei, D., Fratini, M., Pieraccini, M.: Remote survey of the leaning tower of Pisa by interferometric sensing. IEEE Geosci. Remote Sens. Lett. 7(1), 185–189 (2009)ADSCrossRefGoogle Scholar
  32. 32.
    Pieraccini, M.: Monitoring of civil infrastructures by interferometric radar: a review. Sci. World J. (2013)Google Scholar
  33. 33.
    Negulescu, C., Luzi, G., Crosetto, M., Raucoules, D., Roullé, A., Monfort, D., Pujades, L., Colas, B., Dewez, T.: Comparison of seismometer and radar measurements for the modal identification of civil engineering structures. Eng. Struct. 51, 10–22 (2013)CrossRefGoogle Scholar
  34. 34.
    Celebi, M., Prescott, W., Stein, R., Hudnut, K., Behr, J., Wilson, S.: GPS monitoring of dynamic behaviour of long-period structures. Earthq. Spectra 15(1), 55–66 (1999)CrossRefGoogle Scholar
  35. 35.
    Park, H.S., Lee, H.M.: A new approach for health monitoring of structures, terrestrial laser scanning. Comput. Aided Civil Infrastruct. Eng. 22, 19–30 (2007)CrossRefGoogle Scholar
  36. 36.
    Knecht, A., Manetti, L.: Using GPS in structural health monitoring. In: SPIES’s 8th Annual International Symposium on Smart Structures and Materials. Newport Beach (2001)Google Scholar
  37. 37.
    Willy Weather, Melbourne Wind Forecast. Retrieved 2016, from Willy Weather. (2016)
  38. 38.
    Russo, S.: Using experimental dynamic modal analysis in assessing structural integrity in historic buildings. Open Const. Build. Technol. J. 6, 357–368 (2014)CrossRefGoogle Scholar
  39. 39.
    Moayedi, F., Soleimani-Dashtaki, S., Ventura, E.C.: Determination of modal properties of an irregular 20-story concrete shear wall building. In: Proceedings of the 33rd IMAC, a Conference and Exposition on Structural Dynamics. Orlando (2015)Google Scholar
  40. 40.
    Chun, Y.-S., Yang, J.-S., Chang, K.-K., Lee, L.-H.: Approximate estimations of natural periods for apartment buildings with shear-wall dominant system. In: 12th World Conference on Earthquake Engineering. Auckland (2000)Google Scholar
  41. 41.
    Ellis, B.R.: An assessment of the accuracy of predicting the fundamental natural frequencies of buildings and the implications concerning the dynamic analysis of structures. Proc. Inst. Civ. Eng. 69, 763–776 (1980)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Massoud Sofi
    • 1
  • Elisa Lumantarna
    • 1
  • Priyan Mendis
    • 1
  • Lihai Zhang
    • 1
    Email author
  1. 1.Department of Infrastructure EngineeringUniversity of MelbourneMelbourneAustralia

Personalised recommendations