Advertisement

Recursive Estimation Method for Bilinear Systems by Using the Hierarchical Identification Principle

  • Ling Xu
  • Xiao Zhang
  • Feng DingEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

This paper considers the parameter identification of bilinear systems with unknown states, which are disturbed by an autoregressive moving average noise. The hierarchial identification principle is employed to derive new algorithms for interactively estimating the states and parameters via a bilinear state observer. However, the general bilinear state-space model involves many parameters, which causes heavy computational burden. Motivated by this fact, we propose a hierarchical generalized extended least squares (HGELS) algorithm by decomposing the original system into a series of subsystems with small dimensions for enhancing computational efficiency. The performance of the proposed algorithms is illustrated through a numerical example.

Keywords

Parameter estimation Bilinear system Recursive algorithm 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61873111), the Qing Lan Project, the Postdoctoral Science Foundation of Jiangsu Province (No. 1701020A), the 333 Project of Jiangsu Province (No. BRA2018328).

References

  1. 1.
    Ding, F.: System Identification—New Theory and Methods. Science Press, Beijing (2013)Google Scholar
  2. 2.
    Ding, F.: System Identification—Performances Analysis for Identification Methods. Science Press, Beijing (2014)Google Scholar
  3. 3.
    Ding, F.: System Identification—Auxiliary Model Identification Idea and Methods. Science Press, Beijing (2017)zbMATHGoogle Scholar
  4. 4.
    Ding, F.: System Identification—Iterative Search Principle and Identification Methods. Science Press, Beijing (2018)Google Scholar
  5. 5.
    Ding, F.: System Identification—Multi-innovation Identification Theory and Methods. Science Press, Beijing (2016)Google Scholar
  6. 6.
    Ding, F.: Modern Control Theory. Tsinghua University Press, Beijing (2018)Google Scholar
  7. 7.
    Nowak, R.D.: Nonlinear system identification. Circuits Syst. Sig. Process. 21(1), 109–122 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bruni, C., Dipillo, G., Koch, G.: Bilinear systems: an appealing class of nearly linear systems in theory and applications. IEEE Trans. Autom. Control 19(4), 334–348 (1974)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Svoronos, S., Stephanopoulos, G., Rutherford, A.: Bilinear approximation of general non-linear dynamic systems with linear inputs. Int. J. Control 31(1), 109–126 (1980)CrossRefGoogle Scholar
  10. 10.
    Baheti, R., Mohler, R., Spang, H.: Second-order correlation method for bilinear system identification. IEEE Trans. Autom. Control 25(6), 1141–1146 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hara, S., Furuta, K.: Minimal order state observers for bilinear systems. Int. J. Control 24(5), 705–718 (1976)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Funahashi, Y.: Stable state estimator for bilinear systems. Int. J. Control 29(2), 181–188 (1979)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Phan, M.Q., Vicario, F., Longman, R.W.: Optimal bilinear observers for bilinear state-space models by interaction matrices. Int. J. Control 88(8), 1504–1522 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cheng, D.: Controllability of switched bilinear systems. IEEE Trans. Autom. Control. 50(4), 511–515 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, M.H., Liu, X.M.: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Sig. Process. 147, 23–34 (2018)CrossRefGoogle Scholar
  16. 16.
    dos Santos, P.L., Ramos, J.A., de Carvalho, J.L.M.: Identification of bilinear systems with white noise inputs: an iterative deterministic-stochastic subspace approach. IEEE Trans. Control Syst. Technol. 17(5), 1145–1153 (2009)CrossRefGoogle Scholar
  17. 17.
    Verdult, V., Verhaegen, M.: Kernel methods for subspace identification of multivariable LPV and bilinear systems. Automatica 41(9), 1557–1565 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, Y.J., Ding, F., Shi, Y.: An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–970 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ding, J., Ding, F., Liu, X.P., Liu, G.: Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 56(11), 2677–2683 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ding, F., Chen, T.: Hierarchical identification of lifted state-space models for general dual-rate systems. IEEE Trans. Circuits Syst.-I: Regul. Pap. 52(6), 1179–1187 (2005)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Zhang, X., Xu, L., et al.: Combined state and parameter estimation for a bilinear state space system with moving average noise. J. Franklin Inst. 355(6), 3079–3103 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Suresh, A., Jha, M.: Automated essay grading using natural language processing and support vector machine. Int. J. Comput. Technol. 5(2), 18–21 (2018)Google Scholar
  23. 23.
    Murali, V., Chatrapathy, K.: BuyerPlyGround: agriculture trade market using blockchain with machine learning. Int. J. Comput. Technol. 6(5), 31–36 (2019)Google Scholar
  24. 24.
    Sellami, L., Zidi, S., Abderrahim, K.: Self-adaptative multi-kernel algorithm for switched linear systems identification. Int. J. Model. Ident. Control 31(1), 103–111 (2019)CrossRefGoogle Scholar
  25. 25.
    Xue, J., Liu, F., Bai, J., Hou, T.: Modelling of gene signal attribute reduction based on neighbourhood granulation and rough approximation. Int. J. Model. Ident. Control 31(2), 161–168 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Internet of Things TechnologyWuxi Vocational Institute of CommerceWuxiPeople’s Republic of China
  2. 2.School of Internet of Things EngineeringJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations