Advertisement

Research on Noise Suppression and Edge Reading Algorithms in X-Ray Image Detection

  • Xiumin Hu
  • Zhiqin HeEmail author
  • Fan Chao
  • Aiping Pang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

The noise in the Gas Insulation Station (GIS) equipment fault picture obtained for the X-ray imaging system cannot be eliminated due to the use of common filters, and the noise will affect the subsequent edge feature extraction. Therefore, MCPDE (Coupling Partial Differential Equation Model of Nonlinear Diffusion) is selected for noise suppression. This model greatly considers the image fidelity after denoising and has good stability. For the denoised image, taking into account the accuracy of the edge contour, the unsupervised nonlinear algorithm based on the McLaughlin function curve fitting is used for contour extraction. The experimental results show that the method is effective.

Keywords

GIS equipment MCPDE denoising model Maclaurin curve fitting 

Notes

Acknowledgements

National Natural Science Foundation, 61640014.

References

  1. 1.
    Heinzelman, W., Chandrakasan, A., Balakr Ishnan, H.: Energy efficient communication protocol for wireless microsensor networks. In: Proceedings of the 33rd Hawaii International Conference on System Sciences, pp. 3005–3014 (2000)Google Scholar
  2. 2.
    Jain, S.K., Ray, R.K., Bhavsar, A.: A nonlinear coupled diffusion system for image despeckling and application to ultrasound images. Circuits, Syst. Signal Process. 38, 1654–1683 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Anastasi, G., Conti, M., Ancesco, F.R., et al.: Energy conservation in wireless sensor networks: a survey. Ad Hoc Networks 7(3), 537–568 (2009)CrossRefGoogle Scholar
  4. 4.
    Hosseinirada, S.M., Ali Mohammadib, M., Basua, S.K., Pouyanb, A.A.: LEACH routing algorithm optimization through imperialist approach. IJE Trans. Basics 27(1) (January 2014)Google Scholar
  5. 5.
    Aslam, J., Li, Q., Rus, D.: Three power-aware routing algorithms for sensor networks. Wirel. Commun. Mob. Comput. 3(2), 187–208 (2003)CrossRefGoogle Scholar
  6. 6.
    Zhao, M., Yang, Y., Wang, C.: Mobile data gathering with load balanced clustering and dual data uploading in wireless sensor networks. IEEE Trans. Mobile Comput. 14(4), 770–785 (2015)CrossRefGoogle Scholar
  7. 7.
    Qiao, Y., Li, X.Y., Zhao, T.: Analysis of typical military application of small satellite technology. Foreign Electron. Meas. Technol. 36(3), 47–50 (2017)Google Scholar
  8. 8.
    Zhu, Y.H., Ding, E.N.J., Hu, Y.J.: PSO optimization energy balanced routing algorithm of WSNs. Chin. J. Sci. Instrum. 36(1), 78–86 (2015)Google Scholar
  9. 9.
    Fu, H.-L., Chen, H.-C., Lin, P.: Aps: distributed air pollution sensing system on wireless sensor and robot networks. Comput. Commun. 35(9), 1141–1150 (2012)CrossRefGoogle Scholar
  10. 10.
    Elhoseny, M., Yuan, X., Zhengtao, Y.U., et al.: Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun. Lett. 19(12), 2194–2197 (2015)CrossRefGoogle Scholar
  11. 11.
    Wu, L., Du, J., Nie, L., et al.: Cluster head selection method using dynamic k value for wireless sensor network. J. Huazhong Univ. Sci. Technol. (Natural Science Edition) 43(10), 37–41 (2015)Google Scholar
  12. 12.
    Huang, T., Yi, K., Gui, G., et al.: Hierarchical routing protocol based on non-uniform clustering for wireless sensor network. J. Comput. Appl. 36(1), 66–71 (2016)Google Scholar
  13. 13.
    Li, A., Chen, G.: An improved clustering routing algorithm for energy heterogeneous wireless sensor networks. Chin. J. Sens. Actuat. 30(11), 1712–1718 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of Electrical EngineeringGuizhou UniversityGuiyangChina

Personalised recommendations