Advertisement

High Gain Finite-Time Trajectory Tracking Control of Pneumatic Muscle Actuator

  • Tong Shen
  • Jian HuangEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

In this paper, a high gain trajectory tracking control method is proposed for the pneumatic muscle actuator with the tracking errors converging in a finite-time interval. Firstly, we design the sliding surface that ensure the system tracking error reach it within a finite time. Then, an controller with a disturbance observer is designed, which achieves the convergence of the errors within a finite time. At last, numerical simulations, which compare high-gain finite time control with normal finite time control, demonstrate the validity of the method we proposed.

Keywords

Pneumatic muscle actuator Tracking control Finite-time control 

References

  1. 1.
    Choi, T.-Y., Choi, B.-S., Seo, K.-H.: Position and compliance control of a pneumatic muscle actuated manipulator for enhanced safety. IEEE Trans. Control Syst. Technol. 19, 832–842 (2011)CrossRefGoogle Scholar
  2. 2.
    Huang, J., Tu, X., He, J.: Design and evaluation of the RUPERT wearable upper extremity exoskeleton robot for clinical and in-home therapies. IEEE Trans. Syst. Man Cybern. Syst. 46, 926–935 (2016)CrossRefGoogle Scholar
  3. 3.
    Huang, J., Cao, Y., Xiong, C.H., Zhang, H.T.: An echo state gaussian process based nonlinear model predictive control for pneumatic muscle actuators. IEEE Trans. Autom. Sci. Eng. (2018)Google Scholar
  4. 4.
    Huang, J., Qian, J.: Echo state network based predictive control with particle swarm optimization for pneumatic muscle actuator. J. Franklin Insti. 353, 2761–2782 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen C., Huang J.: T-S fuzzy logic control with genetic algorithm optimization for pneumatic muscle actuator. In: 2018 10th International Conference on Modelling, Identification and Control (ICMIC)Google Scholar
  6. 6.
    Kawashima, K., Sasaki, T., Ohkubo, A., Miyata, T., Kagawa, T.: Application of robot arm using fiber knitted type pneumatic artificial rubber muscles. In: IEEE Conference on Robotics and Automation, pp. 4937–4942. New Orleans (2004)Google Scholar
  7. 7.
    Xing, K., Huang, J., He, J., Wang, Y., Wu, J., Xu, Q.: Sliding mode tracking for actuators comprising pneumatic muscle and torsion spring. Trans. Inst. Meas. Control 34, 255–277 (2012)CrossRefGoogle Scholar
  8. 8.
    Bhat, S.P., Bernstein, D.S.: Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Trans. Autom. Control 43, 678–682 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Du, H. , Li, S.: Finite-time cooperative attitude control of multiple spacecraft using terminal sliding mode control technique. Int. J. Modell. Ident. Control (2012)Google Scholar
  10. 10.
    Saad, W., Sellami, A., Garcia, G.: Terminal sliding mode control-based MPPT for a photovoltaic system with uncertainties. Int. J. Modell. Ident. Control 29(2), 118–126 (2018)CrossRefGoogle Scholar
  11. 11.
    Levant, A., Michael, A.: Adjustment of high-order sliding mode controllers. Int. J. Robust Nonlinear Control 19, 1657–1672 (2009)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chen, W.H.: Disturbance observer based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9, 706–710 (2004)CrossRefGoogle Scholar
  13. 13.
    Tan, C.P., Yu, X., Man, Z.: Terminal sliding mode observers for a class of nonlinear systems. Automatica 46, 1401–1404 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Reynolds, D.B., Repperger, D.W., Phillips, C.A., Bandry, G.: Modelling the dynamic characteristics of pneumatic muscle. Ann. Biomed. Eng. 31, 310–317 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.The Key Laboratory of Image Processing and Intelligent Control, School of Artificial Intelligence and AutomationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations