Advertisement

An Aeroengine Adaptive Inverse Control Method Based on U-Model

  • Jiajie ChenEmail author
  • Zhongzhi Hu
  • Jiqiang Wang
  • Weicun Zhang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

This paper applies the U-model control method, combined with the traditional adaptive inverse control method, to the aeroengine speed control design, directly obtaining the engine fuel flow through the inverse controller. The proposed method does not need the complex engine model, and greatly simplifies the complex conventional controller design process. The simulation results show that the U-model-based adaptive inverse controller has an acceptable engine speed control performance in small and large transient responses.

Keywords

Aeroengine U-model Self-adaption Inverse control 

References

  1. 1.
    Widrow, B.: Adaptive Inverse Control. J. IFAC Proc. 20(2), 1–5 (1987)Google Scholar
  2. 2.
    Zhan, S., Bai, J., Li, C.C., et al.: Robustness of adaptive inverse control in solving internal and external disturbance uncertainties for a class of non-linear systems. Int. J. Comput. Appl. Technol. 59(2), 185–192 (2019)Google Scholar
  3. 3.
    Johnson, Y., Ahamed, T.P.I.: Nonlinear modelling of leader-follower UAV close formation flight with dynamic inversion-based control. Int. J. Model. Ident. Control 30(2), 83–92 (2018)CrossRefGoogle Scholar
  4. 4.
    Zhu, Q.M., Guo, L.Z.: A pole placement controller for non-linear dynamic plants. J. Proc. Ins. Mech. Eng. Part I: J. Syst. Control Eng. 216(6), 467–476 (2002)Google Scholar
  5. 5.
    Pedro, F., Luis, A.: NARMAX model identification using a randomised approach. Int. J. Model. Ident. Control 31(3), 205–216 (2019)Google Scholar
  6. 6.
    Chiras, N., Evans, C., Rees, D.: Nonlinear gas turbine modeling using NARMAX structures. J. IEEE Trans. Instrum. Meas. 50(4), 893–898 (2001)CrossRefGoogle Scholar
  7. 7.
    Supeni, E., Yassin, I.M., Ahmad, A., et al.: NARMAX identification of DC motor model using repulsive particle swarm optimization. In: 5th International Colloquium on Signal Processing and Its Applications, IEEE press, Malaysia (2009)Google Scholar
  8. 8.
    Du, W., Zhu, Q.M., Wu, X.: Support vector machine based U-model generalized predictive controller for nonlinear dynamic plants. In: 33th Chinese Control Conference, IEEE press, Nanjing (2014)Google Scholar
  9. 9.
    Shafiq, M., Haseebuddin, M.: U-model-based internal model control for Non-linear dynamic plants. J. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 219(6), 449–458 (2005)Google Scholar
  10. 10.
    Wu, X., Liu, L., Zhu, Q.M., et al.: U-model-based adaptive control for a class of stochastic non-linear dynamic plants with unknown parameters. Int. J. Model. Ident. Control 13(3), 135–143 (2011)CrossRefGoogle Scholar
  11. 11.
    Hasan, E., Ibrahim, R.B., Ali, S.S.A., et al.: U-model based adaptive control of gas process plant. J. Procedia Comput. Sci. 105, 119–124 (2017)CrossRefGoogle Scholar
  12. 12.
    Xu, F.X., Zhu, Q.M., Zhao, D.Y., et al.: U-model based design methods for nonlinear control systems a survey of the development in the 1st decade. J. Control Decis. 7, 961–971 (2013)zbMATHGoogle Scholar
  13. 13.
    Hu, W.F., Huang, J.Q.: Study of aeroengine adaptive inverse control. J. Aerosp. Power 20(2), 293–297 (2005)Google Scholar
  14. 14.
    Chapman, J.W., May, R.D., Lavelle, T.M., et al.: Toolbox for the modeling and analysis of thermodynamic systems (T-MATS) User’s Guide. Technical report (2014)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jiajie Chen
    • 1
    Email author
  • Zhongzhi Hu
    • 1
  • Jiqiang Wang
    • 1
  • Weicun Zhang
    • 2
  1. 1.College of Energy and Power EngineeringNanjing University of Aeronautics and AstronauticsNanjing, JiangsuChina
  2. 2.School of Automation and Electrical EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations