Advertisement

Decomposition-Based Gradient Iterative Estimation for Input Nonlinear Model by Using the Kalman Filter

  • Qiuling Fei
  • Junxia MaEmail author
  • Weili Xiong
  • Jing Chen
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)

Abstract

This paper considers the joint iterative estimation of the parameters and states for Hammerstein nonlinear state space systems. By applying the model decomposition technique, the unknown parameters to be estimated are distributed into two regression identification models. Furthermore, under the framework of the gradient iterative algorithm and the hierarchical identification theory, a decomposition-based gradient iterative algorithm is proposed to estimate the unknown parameters of nonlinear system. Finally, a numerical simulation example is given to validate the effectiveness of the algorithm.

Keywords

Input nonlinear model Kalman filter Model decomposition Gradient iterative 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grants 61803183 and 61773182, the Natural Science Foundation of Jiangsu Province under Grants BK20180591 and BK20170198, and the Fundamental Research Funds for the Central Universities under Grant JUSRP11923.

References

  1. 1.
    Ahmad, T.A., Fernando, E.S.: Adaptive decentralized sliding model controller and observer for asynchronous nonlinear large-scale systems with backlash. Int. J. Model. Ident. Control 30, 61–71 (2018)CrossRefGoogle Scholar
  2. 2.
    Houda, S., Samira, K.: Identification of nonlinear dynamic systems described by Hammerstein state-space models with discontinuous nonlinearities. Int. J. Model. Ident. Control 3, 127–135 (2017)Google Scholar
  3. 3.
    Vatani, M., Hovd, M., Olaru, S.: Control design for discrete-time bilinear systems using the Scalarized Schur complement. Int. J. Robust Nonlin. 27, 4492–4506 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Esmaeilani, L., Ghaisari, J., Bagherzadeh, M.A.: Bayesian approach to identify Hammerstein-Wiener nonlinear model in presence of noise and disturbance. IET Control Theory Appl. 13, 367–376 (2019)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ding, F., Liu, X.M., Liu, M.M.: The recursive least square identification algorithm for a class of Wiener nonlinear system. J. Franklin Inst. 353, 1518–1526 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ma, J.X., Xiong, W.L., Chen, J., et al.: Hierarchical identification for multivariate Hammerstein systems by using the modified Kalman filter. IET Control Theory Appl. 11, 857–869 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mehmood, A., Chaudhary, N.I., Zameer, A.: Backtracking search optimization heuristics for nonlinear hammerstein controlled auto regressive auto regressive systems. ISA Trans. (2019)Google Scholar
  8. 8.
    Ma, J.X., Chen, J., Xiong, W.L.: Expectation maximization estimation algorithm for Hammerstein models with non-Gaussian noise and random time delay from dual-rate sampled-data. Digit. Signal Process. 73, 135–144 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, J., Zheng, W.X., Gu, J., et al.: A recursive identification algorithm for wiener nonlinear systems with linear state-space subsystem. Circ. Syst. Signal Process. 37, 2374–2393 (2017)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Wang, Y.J., Ding, F.: A filtering based multi-innovation gradient estimation algorithm and performance analysis for nonlinear dynamical systems. IMA. J. Appl. Math. 82, 1171–1191 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ma, J., Wu, O., Huang, B., et al.: Expectation maximization estimation for a class of input nonlinear state space systems by using the Kalman smoother. Signal Process. 148, 295–303 (2017)Google Scholar
  12. 12.
    Kulikov, G.Y., Kulikova, M.V.: Numerical robustness of extended Kalman filtering based state estimation in ill-Conditioned continuous-discrete nonlinear stochastic chemical systems. Int. J. Robust Nonlin. 29, 1377–1395 (2019)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Wang, H.Q., Chen, J., Brownjohn James, M.W.: Parameter identification of pedestrian’s spring-mass-damper model by ground reaction force records through a particle filter approach. J. Sound Vib. 411, 409–421 (2017)CrossRefGoogle Scholar
  14. 14.
    Dong, Z.P., Yang, X., Zheng, M.: Parameter identification of unmanned marine vehicle maneuvering model based on extended Kalman filter and support vector machine. J. Int. J. Adv. Rob. Syst. 16, 18–29 (2019)CrossRefGoogle Scholar
  15. 15.
    Mousazadeh, S., Karimi, M.: Estimating multivariate ARCH parameters by two-stage least-squares method. Signal Process. 89, 921–932 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhang, W.G.: Decomposition based least squares iterative estimation algorithm for output error moving average systems. Eng. Comput. 31, 709–725 (2014)CrossRefGoogle Scholar
  17. 17.
    Xu, L., Ding, F., Zhu, Q.M.: Hierarchical newton and least squares iterative estimation algorithm for dynamic systems by transfer functions based on the impulse responses. Int. J. Syst. Sci. 50, 141–151 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A novel data filtering based multi-innovation stochastic gradient algorithm for hammerstein nonlinear system. Digit. Signal Process. 46, 215–225 (2015)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Qiuling Fei
    • 1
  • Junxia Ma
    • 1
    Email author
  • Weili Xiong
    • 1
  • Jing Chen
    • 1
  1. 1.Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things EngineeringJiangnan UniversityWuxiChina

Personalised recommendations