H Phase Control for Flexible Systems

  • Junfeng YangEmail author
  • Muzhou Yu
  • Yanjie Niu
  • Wenjie Zhang
  • Fanwei Meng
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)


A new weighted H optimization method is proposed to design a robust controller for the flexible system, it solves the problem that the controller is unstable and poor robustness which using H loop shaping method design. The idea of phase control is realized by the configuration of the closed-loop poles which corresponding to the flexible modes, and the closed-loop poles of the high-frequency parts are allowed to differ from the expected poles and weakening the strict positive real constraints. Combined with the phase control and H optimization, the desired closed-loop poles can be realized by the controller. The new method has the advantage of flexibility, and a clear physical meaning in the design process. The feasibility of the proposed method is verified by two simulation examples.


Flexible systems Phase control H optimization Robustness Local positivity 



Manuscript received April 7, 2018. This work was supported in part by the Doctoral Foundation of Liaoning Province (No. 20170520333), the Fundamental Research Funds for the Central Universities(No. N182304010), the Doctoral Foundation of Hebei Province (No. F2019501012).


  1. 1.
    Ding, S.H., Zheng, W.X.: Nonsmooth attitude stabilization of a flexible spacecraft. IEEE Trans. Aerosp. Electron. Syst. 50(2), 1163–1181 (2014)CrossRefGoogle Scholar
  2. 2.
    Si, Z., Liu, Y.: High accuracy and high stability attitude control of a satellite with a rotating solar array. J. Astronaut. 31(12), 2697–2073 (2010)Google Scholar
  3. 3.
    Wu, Y., Li, J., Zeng, H., Duan, G.: Robust H-infinity control design for spacecrafts with large flexible netted antennas. Control Theory Appl. 30(3), 365–371 (2013)Google Scholar
  4. 4.
    Balini, H., Scherer, C.W., Witte, J.: Performance enhancement for AMB systems using unstable H controller crossovers. IEEE Trans. Control Syst. Technol. 19(6), 1479–1492 (2011)CrossRefGoogle Scholar
  5. 5.
    Cherubini, G., Chung, C.C., Messner, W.C., et al.: Control methods in data-storage systems. IEEE Trans. Control Syst. Technol. 20(2), 296–322 (2012)CrossRefGoogle Scholar
  6. 6.
    Lu, Y.S.: Internal model control of lightly damped systems subject to periodic exogenous signals. IEEE Trans. Control Syst. Technol. 8(3), 699–704 (2010)CrossRefGoogle Scholar
  7. 7.
    Pradhan, S.K., Subudhi, B.: Nonlinear adaptive model predictive controller for a flexible manipulator: an experimental study. IEEE Trans. Control Syst. Technol. 22(5), 1754–1768 (2014)CrossRefGoogle Scholar
  8. 8.
    McFarlaned, D., Glover, K.: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Lecture Notes in Control and Information Sciences, 138. Springer, New York (1989)Google Scholar
  9. 9.
    Sun, X., Yang, X., Geng, Y., Yang, D.: H∞ loop-shaping attitude stabilization control fora large flexible satellite platform. Syst. Eng. Electron. 27(3), 490–493 (2005)Google Scholar
  10. 10.
    McFarlane, D.C., Glover, K.: A loop shaping design procedure using H∞ synthesis. IEEE Trans. Autom. Control 37(6), 759–769 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Glover, K., McFarlane, D.: Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. Lecture Notes in Control and Information Sciences, vol. 138. Springer, New York (1990)Google Scholar
  12. 12.
    He, Z., Meng, M., Liu, W., Wang, G.: Robustness of H∞ loop shaping design. Acta Autom. Sin. 36(6), 890–893 (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lanzon, A., Tsiotras, P.: A combined application of H∞ loop shaping and μ-synthesis to control high-speed flywheels. IEEE Control Syst. Technol. 13(5), 766–777 (2005)CrossRefGoogle Scholar
  14. 14.
    He, Z., Jiang, X., Meng, F.-W., Wang, G.: μ-synthesis in H-infinity loop-shaping design. Control Theory Appl. 29(3), 347–352 (2012)Google Scholar
  15. 15.
    Meng, F.-W., He, Z., Wang, G., Zhou, D.: Control design of flexible systems and H-infinity loop-shaping method. Control Theory Appl. 30(8), 1014–1020 (2013)Google Scholar
  16. 16.
    Franklin, G.F., Powell, J.D., Abbas, E.N.: Feedback Control of Dynamic Systems (4th edn). Pearson Education, Beijing (2003)Google Scholar
  17. 17.
    Doyle, J.C., Francis, B.A., Tannenbaum, A.R.: Feedback Control Theory, 208–213. Tsinghua University Press, Beijing (1993)Google Scholar
  18. 18.
    Mahmoodi, S.N., Ahmadian, M., Inman, D.J.: Adaptive modified positive position feedback for active vibration control of structures. J. Intell. Mater. Syst. Struct. 21(4), 571–580 (2010)CrossRefGoogle Scholar
  19. 19.
    Coustal, P., Michelin, J.M.: Industrial application of an H-infinity design method for flexible structures. IEEE Control Syst. 14(4), 49–54 (1994)CrossRefGoogle Scholar
  20. 20.
    Guangxiong, W.A.N.G., Zhen, H.E.: Applied H∞ Control. Harbin Institute of Technology Press, Harbin (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Junfeng Yang
    • 1
    Email author
  • Muzhou Yu
    • 1
  • Yanjie Niu
    • 2
  • Wenjie Zhang
    • 1
  • Fanwei Meng
    • 1
  1. 1.School of Control EngineeringNortheastern University at QinhuangdaoQinhuangdaoChina
  2. 2.PLA Navy 92012 TroopsZhoushanChina

Personalised recommendations