Tracking Control Design for a Class of Mobile Robot with a Single Trailer via Differential Flatness Approach

  • Chunxiao Wang
  • Huajun Fu
  • Zhongcai ZhangEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 582)


In this paper, a nonlinear disturbance observer (NDO) is designed for mobile robot with a single trailer. To realize the tracking control objective, the considered mobile robot is transformed into chained-form system by differential flatness approach. The global asymptotic stability of the presented disturbance observer is guaranteed by appropriately choosing design function. Under this NDO, a tracking controller is proposed to force the system trajectory track the desired trajectory.


Tractor-Trailers Tracking Nonlinear disturbance observer Disturbances Integral sliding-model control 



This work was supported by the National Natural Science Foundation of China (61673243 and 61703232), the China Postdoctoral Science Foundation (2018M632645), the Natural Science Foundation of Shandong Province (ZR2017QF013, ZR2017MF068), the Major Research Project of Shandong Province (2017GSF18116), and the Experimental Technical Research Project of Qufu Normal University (SJ201706).


  1. 1.
    Koller, D., Luong, Q.T., Weber, J., et al.: Vision-based autonomous road vehicle guidance. In: Handbook of Pattern Recognition and Computer Vision, 2nd edn, pp. 817–854. World Scientific Publishing Co, Singapore (1999)CrossRefGoogle Scholar
  2. 2.
    Colle, E., Galerne, S.: A robust set approach for mobile robot localization in ambient environment. Auton. Rob. 3, 1–17 (2018)Google Scholar
  3. 3.
    Astolfi, A., Bolzern, P., Locatelli, A.: Path-tracking of a tractor-trailer vehicle along rectilinear and circular paths: a Lyapunov-based approach. IEEE Trans. Rob. Autom. 20(1), 154–160 (2004)CrossRefGoogle Scholar
  4. 4.
    Altafini, C., Speranzon, A., Wahlberg, B.: A feedback control scheme for reversing a truck and trailer vehicle. IEEE Trans. Rob. Autom. 17(6), 915–922 (2001)CrossRefGoogle Scholar
  5. 5.
    Liu, Z.J., Lu, Q., Yang, P., Chen, L.L.: Path planning for tractor-trailer mobile robot system based on equivalent size. In: Proceedings of the 7th World Congress on Intelligent Control and Automation, Chongqing, pp. 5744–5749 (2008)Google Scholar
  6. 6.
    Gonzlez-Cantos, A.: Backing-up maneuvers of autonomous tractor-trailer vehicles using the qualitative theory of nonlinear dynamical systems. Int. J. Rob. Res. 28(1), 49–65 (2009)CrossRefGoogle Scholar
  7. 7.
    Chen, W.-H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932–938 (2000)CrossRefGoogle Scholar
  8. 8.
    Huang, A.C., Chen, Y.C.: Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12(5), 770–775 (2004)CrossRefGoogle Scholar
  9. 9.
    Abdollahi, F., Talebi, H., Patel, R.: A stable neural network based observer with application to flexible-joint manipulators. IEEE Trans. Neural Netw. 17(1), 118–129 (2006)CrossRefGoogle Scholar
  10. 10.
    Chaoui, H., Sicard, P., Gueaieb, W.: ANN-based adaptivecontrol of robotic manipulators with friction and joint elasticity. IEEE Trans. Ind. Electron. 56(8), 3174–3187 (2009)CrossRefGoogle Scholar
  11. 11.
    Rigatos, G.: Nonlinear Control and Filtering using Differential Flatness Approaches: Applications to Electromechanical Systems. Springer International Publishing AG, Switzerland (2015)CrossRefGoogle Scholar
  12. 12.
    Rgatos, G.G.: Flatness-based adaptive fuzzy control for nonlinear dynamical systems. In: IEEE/ASME, International Conference on Advanced Intelligent Mechatronics, Budapest, Hungary (2011)Google Scholar
  13. 13.
    Oriolo, G., De Luca, A., Vendittlli, M.: WMR control via dynamic feedback linearization: design, implementation and experimental validation. IEEE Trans. Control Syst. Technol. 10(6), 835–852 (2002)CrossRefGoogle Scholar
  14. 14.
    Rgatos, G.G.: Extended Kalman and particle Filtering for sensor fusion in motion control of mobile robots. Math. Comput. Simul. 81(3), 590–607 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhang, Z., Wu, Y., Huang, J.: Differential-flatness-based finite-time antiswing control of underactuated crane systems. Nonlinear Dyn. 87(3), 1749–1761 (2017)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Li, L., Wu, Y.: Disturbance-observer-based antiswing control of underactuated crane systems via terminal sliding mode. IET Control Theory Appl. 12(18), 2588–2594 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.School of EngineeringQufu Normal UniversityRizhaoPeople’s Republic of China

Personalised recommendations