Advertisement

Management of Patient with Traumatic Brain Injury: Epidural Hematoma

  • Letha MathewsEmail author
Chapter
  • 32 Downloads

Abstract

Traumatic Brain Injury (TBI) is defined as “an alteration in brain function or other evidence of brain pathology, caused by external force” (Menon et al., Arch Phys Med Rehabil 91(11):1637–40, 2010). TBI is a major cause of death and disability across the world causing significant economic impact in both developed and developing nations. In the USA alone, more than 50,000 people die annually from TBI and accounts for 2.2 million emergency department visits annually (Centers for Disease Control and Prevention, https://www.cdc.gov/traumaticbraininjury/data/rates.html, 2001–2010). TBI is classified as mild (>13), moderate (9–12), or severe (<9) based on the Glasgow Coma Scale (GCS) (Teasdale and Jennett, Lancet 2(7872):81–4, 1974). The cause of TBI varies with age, with falls being more common in the very young (0–14 years) and older (>45 years) and motor vehicle accidents and assaults being more common in the 5–24 year group (Centers for Disease Control and Prevention, https://www.cdc.gov/traumaticbraininjury/data/rates.html, 2001–2010). Prevention of secondary injuries such as hypotension and hypoxia can significantly affect outcome, and anesthesiologists, emergency room physicians, and critical care physicians play a major role in the management during the secondary phase of TBI. Epidural Hematoma (EDH) is a serious complication resulting from head injury when bleeding into the space between the dura and skull occurs. Acute EDH with symptoms is a neurologic emergency which often requires operative intervention.

Keywords

Traumatic brain injury Epidural hematoma Secondary injuries Intracranial pressure Management Brain trauma foundation 

References

  1. 1.
    Menon DK, Schwab K, Wright DW, Maas AI, Demographics and Clinical Assessment Working Group of the International and Interagency Initiative toward Common Data Elements for Research on Traumatic Brain Injury and Psychological Health. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil. 2010;91(11):1637–40.CrossRefGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention, N. C. f. I. P. a. C., Division of Unintentional Injury Prevention Rates of TBI-related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2001–2010. https://www.cdc.gov/traumaticbraininjury/data/rates.html.
  3. 3.
    Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2(7872):81–4.CrossRefGoogle Scholar
  4. 4.
    Fodstad H, Kelly PJ, Buchfelder M. History of the Cushing reflex. Neurosurgery. 2006;59(5):1132–7. discussion 1137CrossRefGoogle Scholar
  5. 5.
    Chesnut RM, Marshall LF, Klauber MR, Blunt BA, Baldwin N, Eisenberg HM, Jane JA, Marmarou A, Foulkes MA. The role of secondary brain injury in determining outcome from severe head injury. J Trauma. 1993;34(2):216–22.CrossRefGoogle Scholar
  6. 6.
    Benson M, Junger A, Fuchs C, Quinzio L, Bottger S, Hempelmann G. Use of an anesthesia information management system (AIMS) to evaluate the physiologic effects of hypnotic agents used to induce anesthesia. J Clin Monit Comput. 2000;16(3):183–90.CrossRefGoogle Scholar
  7. 7.
    Bell JD. In vogue: ketamine for neuroprotection in acute neurologic injury. Anesth Analg. 2017;124(4):1237–43.CrossRefGoogle Scholar
  8. 8.
    Thippeswamy RR, Shetty SR. Intravenous low dose fentanyl versus lignocaine in attenuating the hemodynamic responses during endotracheal intubation: a randomized double-blind study. Anesth Essays Res. 2018;12(4):778–85.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Kumar A, Seth A, Prakash S, Deganwa M, Gogia AR. Attenuation of the hemodynamic response to laryngoscopy and tracheal intubation with fentanyl, lignocaine nebulization, and a combination of both: a randomized controlled trial. Anesth Essays Res. 2016;10(3):661–6.CrossRefGoogle Scholar
  10. 10.
    Kramer N, Lebowitz D, Walsh M, Ganti L. Rapid sequence intubation in traumatic brain-injured adults. Cureus. 2018;10(4):e2530.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kovarik WD, Mayberg TS, Lam AM, Mathisen TL, Winn HR. Succinylcholine does not change intracranial pressure, cerebral blood flow velocity, or the electroencephalogram in patients with neurologic injury. Anesth Analg. 1994;78(3):469–73.CrossRefGoogle Scholar
  12. 12.
    Brown MM, Parr MJ, Manara AR. The effect of suxamethonium on intracranial pressure and cerebral perfusion pressure in patients with severe head injuries following blunt trauma. Eur J Anaesthesiol. 1996;13(5):474–7.CrossRefGoogle Scholar
  13. 13.
    Stirt JA, Grosslight KR, Bedford RF, Vollmer D. “Defasciculation” with metocurine prevents succinylcholine-induced increases in intracranial pressure. Anesthesiology. 1987;67(1):50–3.CrossRefGoogle Scholar
  14. 14.
    Clancy M, Halford S, Walls R, Murphy M. In patients with head injuries who undergo rapid sequence intubation using succinylcholine, does pretreatment with a competitive neuromuscular blocking agent improve outcome? A literature review. Emerg Med J. 2001;18(5):373–5.CrossRefGoogle Scholar
  15. 15.
    Thiboutot F, Nicole PC, Trepanier CA, Turgeon AF, Lessard MR. Effect of manual in-line stabilization of the cervical spine in adults on the rate of difficult orotracheal intubation by direct laryngoscopy: a randomized controlled trial. Can J Anaesth. 2009;56(6):412–8.CrossRefGoogle Scholar
  16. 16.
    Nolan JP, Wilson ME. Orotracheal intubation in patients with potential cervical spine injuries. An indication for the gum elastic bougie. Anaesthesia. 1993;48(7):630–3.CrossRefGoogle Scholar
  17. 17.
    Bullock MR, Chesnut R, Ghajar J, Gordon D, Hartl R, Newell DW, Servadei F, Walters BC, Wilberger JE, Surgical Management of Traumatic Brain Injury Author Group. Surgical management of acute epidural hematomas. Neurosurgery. 2006;58(3 Suppl):S7–15; discussion Si-iv.PubMedGoogle Scholar
  18. 18.
    Hlatky R, Furuya Y, Valadka AB, Gonzalez J, Chacko A, Mizutani Y, Contant CF, Robertson CS. Dynamic autoregulatory response after severe head injury. J Neurosurg. 2002;97(5):1054–61.CrossRefGoogle Scholar
  19. 19.
    Junger EC, Newell DW, Grant GA, Avellino AM, Ghatan S, Douville CM, Lam AM, Aaslid R, Winn HR. Cerebral autoregulation following minor head injury. J Neurosurg. 1997;86(3):425–32.CrossRefGoogle Scholar
  20. 20.
    Carney N, Totten AM, O’Reilly C, Ullman JS, Hawryluk GWJ, Bell MJ, Bratton SL, Chesnut R, Harris OA, Kissoon N, Rubiano AM, Shutter L, Tasker RC, Vavilala MS, Wilberger J, Wright DW, Ghajar J. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery. 2017;80(1):6–15.CrossRefGoogle Scholar
  21. 21.
    Muizelaar JP, Wei EP, Kontos HA, Becker DP. Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg. 1983;59(5):822–8.CrossRefGoogle Scholar
  22. 22.
    Mendelow AD, Teasdale GM, Russell T, Flood J, Patterson J, Murray GD. Effect of mannitol on cerebral blood flow and cerebral perfusion pressure in human head injury. J Neurosurg. 1985;63(1):43–8.CrossRefGoogle Scholar
  23. 23.
    Hartl R, Medary MB, Ruge M, Arfors KE, Ghahremani F, Ghajar J. Hypertonic/hyperoncotic saline attenuates microcirculatory disturbances after traumatic brain injury. J Trauma. 1997;42(5 Suppl):S41–7.CrossRefGoogle Scholar
  24. 24.
    Horn P, Munch E, Vajkoczy P, Herrmann P, Quintel M, Schilling L, Schmiedek P, Schurer L. Hypertonic saline solution for control of elevated intracranial pressure in patients with exhausted response to mannitol and barbiturates. Neurol Res. 1999;21(8):758–64.CrossRefGoogle Scholar
  25. 25.
    Chui J, Mariappan R, Mehta J, Manninen P, Venkatraghavan L. Comparison of propofol and volatile agents for maintenance of anesthesia during elective craniotomy procedures: systematic review and meta-analysis. Can J Anaesth. 2014;61(4):347–56.CrossRefGoogle Scholar
  26. 26.
    Lutz LJ, Milde JH, Milde LN. The cerebral functional, metabolic, and hemodynamic effects of desflurane in dogs. Anesthesiology. 1990;73(1):125–31.CrossRefGoogle Scholar
  27. 27.
    Todd MM, Drummond JC. A comparison of the cerebrovascular and metabolic effects of halohane and isoflurane in the cat. Anesthesiology. 1984;60(4):276–82.CrossRefGoogle Scholar
  28. 28.
    Cooper DJ, Rosenfeld JV, Murray L, Arabi YM, Davies AR, D’Urso P, Kossmann T, Ponsford J, Seppelt I, Reilly P, Wolfe R. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med. 2011;364(16):1493–502.CrossRefGoogle Scholar
  29. 29.
    Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, Anderson I, Bulters DO, Belli A, Eynon CA, Wadley J, Mendelow AD, Mitchell PM, Wilson MH, Critchley G, Sahuquillo J, Unterberg A, Servadei F, Teasdale GM, Pickard JD, Menon DK, Murray GD, Kirkpatrick PJ. Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 2016;375(12):1119–30.CrossRefGoogle Scholar
  30. 30.
    Jeremitsky E, Omert LA, Dunham CM, Wilberger J, Rodriguez A. The impact of hyperglycemia on patients with severe brain injury. J Trauma. 2005;58(1):47–50.CrossRefGoogle Scholar
  31. 31.
    Finfer S, Chittock DR, Su SY, Blair D, Foster D, Dhingra V, Bellomo R, Cook D, Dodek P, Henderson WR, Hebert PC, Heritier S, Heyland DK, McArthur C, McDonald E, Mitchell I, Myburgh JA, Norton R, Potter J, Robinson BG, Ronco JJ. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360(13):1283–97.CrossRefGoogle Scholar
  32. 32.
    Bilotta F, Caramia R, Cernak I, Paoloni FP, Doronzio A, Cuzzone V, Santoro A, Rosa G. Intensive insulin therapy after severe traumatic brain injury: a randomized clinical trial. Neurocrit Care. 2008;9(2):159–66.CrossRefGoogle Scholar
  33. 33.
  34. 34.
    Coles JP, Fryer TD, Coleman MR, Smielewski P, Gupta AK, Minhas PS, Aigbirhio F, Chatfield DA, Williams GB, Boniface S, Carpenter TA, Clark JC, Pickard JD, Menon DK. Hyperventilation following head injury: effect on ischemic burden and cerebral oxidative metabolism. Crit Care Med. 2007;35(2):568–78.CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Madden LK, DeVon HA. A systematic review of the effects of body temperature on outcome after adult traumatic brain injury. J Neurosci Nurs. 2015;47(4):190–203.CrossRefGoogle Scholar
  37. 37.
    Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.CrossRefGoogle Scholar
  38. 38.
    Lohani S, Devkota UP. Hyponatremia in patients with traumatic brain injury: etiology, incidence, and severity correlation. World Neurosurg. 2011;76(3–4):355–60.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Division of NeuroanesthesiologyVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations