Advertisement

Contrast Stretching Techniques for Enhancement of Mammograms

  • Vikrant BhatejaEmail author
  • Mukul Misra
  • Shabana Urooj
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 861)

Abstract

Contrast stretching techniques deal with manipulation of grey-levels of an image that do not properly incur utilization of the dynamic range of the display system. These are spatial processing techniques which modify or enhance the contrast of the image to yield a visually better image for specific application.

References

  1. S.A. Ahmad, M.N. Taib, N.E.A. Khalid, H. Taib, An analysis of image enhancement techniques for dental X-ray image interpretation. Int. J. Mach. Learn. Comput. 2(3), 292–297 (2012)Google Scholar
  2. S. Anand, S. Gayathri, Mammogram image enhancement by two-stage adaptive histogram equalization. Optik—Int. J. Light. Electron Opt. 126(21), 3150–3152 (2015)CrossRefGoogle Scholar
  3. V. Bhateja, M. Misra, S. Urooj, Unsharp masking approaches for hvs based enhancement of mammograms: a comparative evaluation. Futur. Gener. Comput. Syst. 82 176–189 (2018)Google Scholar
  4. A.C. Bovik, Handbook of Image and Video Processing, 2nd edn. (Elsevier Academic Press, Amsterdam, 2010)Google Scholar
  5. S. Chiandussi, G. Ramponi, Nonlinear unsharp masking for the enhancement of document images, in Proceedings of IEEE 8th European Signal Processing Conference (EUSIPCO-1996) (Trieste, Italy, 1996), pp. 1–4Google Scholar
  6. A.P. Dhawan, G. Buelloni, R. Gordon, Enhancement of mammographic features by optimal adaptive neighborhood image processing. IEEE Trans. Med. Imaging 5(1), 8–15 (1986)CrossRefGoogle Scholar
  7. T.L. Economopoulos, P.A. Asvestas, G.K. Matsopoulos, Contrast enhancement of images using partitioned iterated function systems. Image Vis. Comput. 28(1), 45–54 (2010)CrossRefGoogle Scholar
  8. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice Hall, USA, 2007)Google Scholar
  9. R. Gordon, R.M. Rangayyan, Feature enhancement of film mammograms using fixed and adaptive neighborhoods. Appl. Opt. 23(4), 560–564 (1984)CrossRefGoogle Scholar
  10. S. Jenifer, S. Parasuraman, A. Kadirvelu, Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl. Soft Comput. 42, 167–177 (2016)CrossRefGoogle Scholar
  11. L. Kanelovitch, Y. Itzchak, A. Rundstein, M. Sklair, H. Spitzer, Biologically derived companding algorithm for high dynamic range mammography images. IEEE Trans. Biomed. Eng. 60(8), 2253–2261 (2013)CrossRefGoogle Scholar
  12. J.K. Kim, J.M. Park, K.S. Song, H.W. Park, Adaptive mammographic image enhancement using first derivative and local statistics. IEEE Trans. Med. Imaging 16(5), 495–502 (1997)CrossRefGoogle Scholar
  13. G. Kom, A. Tiedeu, M. Kom, Automated detection of masses in mammograms by local adaptive thresholding. Comput. Biol. Med. 37(1), 37–48 (2007)CrossRefGoogle Scholar
  14. P. Kuş, İ. Karagöz, Detection of micro-calcification clusters in digitized X-ray mammograms using unsharp masking and image statistics. Turk. J. Electr. Eng. & Comput. Sci. 21(1), 2048–2061 (2013)Google Scholar
  15. Y.H. Lee, S.Y. Park, A study of convex/concave edges and edge-enhancing operators based on the laplacian. IEEE Trans. Circuits Syst. 37(7), 940–946 (1990)MathSciNetCrossRefGoogle Scholar
  16. S.K. Mitra, H. Li, I. Li, T-H. Yu, A new class of non-linear filters for image enhancement, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, (ICASSP-1991) (Toronto, Canada, 1991), pp. 2525–2528Google Scholar
  17. K.A. Panetta, Z. Yicong, S.S. Agaian, H. Jia, Non-linear unsharp masking for mammogram enhancement. IEEE Trans. Inf. Technol. Biomed. 15(6), 918–928, (2011)CrossRefGoogle Scholar
  18. F. Pellegrino, W. Vanzella, V. Torre, Edge detection revisited. IEEE Trans. Syst., Man, Cybernetics—Part B: Cybern., 34(3), 1500–1518 (2004)CrossRefGoogle Scholar
  19. N. Petrick, H.-P. Chan, B. Sahiner, D. Wei, An adaptive density-weighted contrast enhancement filter for mammographic breast mass detection. IEEE Trans. Med. Imaging 15(1), 59–67 (1996)CrossRefGoogle Scholar
  20. E.D. Pisano, S. Zong, B.M. Hemminger, M. Deluca, R.E. Johnston, K. Muller, M.P. Braeuning, S.M. Pizer, Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 11(4), 193–200 (1998)CrossRefGoogle Scholar
  21. A. Polesel, G. Ramponi, V.J. Mathews, Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)CrossRefGoogle Scholar
  22. W.K. Pratt, Image enhancement, in Digital Image Processing, 4th edn. (PIKS Scientific Inside, 2001), pp. 247–305Google Scholar
  23. G. Ramponi, A cubic unsharp masking technique for contrast enhancement. Signal Process. 67(2), 211–222 (1998)CrossRefGoogle Scholar
  24. G. Ramponi, A. Polesel, Rational unsharp masking technique. J. Electron. Imaging 7(2), pp. 333–338 (1998)CrossRefGoogle Scholar
  25. G. Ramponi, G.L. Sicuranza, Image sharpening using a polynomial operator, in Proceedings of IEEE European Conference on Circuit Theory and Design (ECCTD-1993) (Davos, Switzerland, 1993), pp. 1431–1436Google Scholar
  26. R.M. Rangayyan, L. Shen, Y. Shen, J.E.L. Desautels, H. Bryant, T.J. Terry, N. Horeczko, M.S. Rose, Improvement of sensitivity of breast cancer diagnosis with adaptive neighborhood contrast enhancement of mammograms. IEEE Trans. Inf. Technol. Biomed. 1(3), 161–170 (1997)CrossRefGoogle Scholar
  27. J. Rogowska, K. Preston and D. Sashin, Evaluation of digital unsharp masking and local contrast stretching as applied to chest radiology. IEEE Trans. Biomed. Eng. 35(10), 817–827 (1988).CrossRefGoogle Scholar
  28. J.A. Stark, Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)CrossRefGoogle Scholar
  29. M. Sundaram, K. Ramar, N. Arumugam, G. Prabin, Histogram modified local contrast enhancement for mammogram images. Appl. Soft Comput. 11(8), 5809–5816 (2011)CrossRefGoogle Scholar
  30. Z. Wu, J. Yuan, B. Lv, X. Zheng, Digital mammography image enhancement using improved unsharp masking approach, in Proceedings of IEEE 3rd International Congress on Image and Signal Processing (Yantai, China, 2010), pp. 668–671Google Scholar
  31. J.B. Zimmerman, S.M. Pizer, E.V. Staab, J.R. Perry, W. Mccartney, B.C. Brenton, An evaluation of the effectiveness of adaptive histogram equalization for contrast enhancement. IEEE Trans. Med. Imaging 7(4), 304–312 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional Colleges (SRMGPC)LucknowIndia
  2. 2.Dr. A.P.J. Abdul Kalam Technical UniversityLucknowIndia
  3. 3.Faculty of Electronics and Communication EngineeringShri Ramswaroop Memorial University (SRMU)BarabankiIndia
  4. 4.Department of Electrical Engineering, College of EngineeringPrincess Nourah Bint Abdulrahman UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations