Computer-aided Analysis of Mammograms

  • Vikrant BhatejaEmail author
  • Mukul Misra
  • Shabana Urooj
Part of the Studies in Computational Intelligence book series (SCI, volume 861)


Consultant radiologists are generally the prime experts for mammogram reading and interpretation.


  1. J.R. Benson, G.P.H. Gui, T. Tuttle (eds.), Early Breast Cancer: From Screening to Multidisciplinary Management, 3rd edn. (CRC Press, Boca Raton, 2013)Google Scholar
  2. K. Ganesan, U.R. Acharya, C.K. Chua, L.C. Min, K.T. Abraham, K.-H. Ng, Computer-aided breast cancer detection using mammograms: a review. IEEE Rev. Biomed. Eng. 6, 77–98 (2013)CrossRefGoogle Scholar
  3. B.-W. Hong, B.-S. Sohn, Segmentation of regions of interest in mammograms in a topographic approach. IEEE Trans. Inf. Technol. Biomed. 14(1), 129–139 (2010)Google Scholar
  4. A. Jalalian, S.B. Mashohor, H.R. Mahmud, M.I. Saripan, A.R. Ramli, B. Karasfi, Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clin. Imaging 37(3), 420–426 (2013)CrossRefGoogle Scholar
  5. S. Jenifer, S. Parasuraman, A. Kadirvelu, Contrast enhancement and brightness preserving of digital mammograms using fuzzy clipped contrast-limited adaptive histogram equalization algorithm. Appl. Soft Comput. 42, 167–177 (2016)CrossRefGoogle Scholar
  6. B.M. Keller, A. Oustimov, Y. Wang, J. Chen, R.J. Acciavatti, Y. Zheng, S. Ray, J.C. Gee, A.D. Maidment, D. Kontos, Parenchymal texture analysis in digital mammography: robust texture feature identification and equivalence across devices. J. Med. Imaging 2(2), 024501.1–024501.12 (2015)CrossRefGoogle Scholar
  7. D.B. Kopans, Breast Imaging, 3rd edn. (Lippincott Williams and Wilkins, Baltimore, MD, 2006)Google Scholar
  8. G. Peters, C.M. Jones, K. Daniels, Why is micro-calcification missed on mammography? J. Med. Imaging Radiat. Oncol. 57(1), 32–37 (2013)CrossRefGoogle Scholar
  9. G.Q. Rovere, R. Warren, J.R. Benson, Early Breast Cancer: From Screening to Multidisciplinary Management, 2nd edn. (Informa Healthcare, United Kingdom, 2005)Google Scholar
  10. M. Samulski, R. Hupse, C. Boetes, R.D.M. Mus, G.J. den Heeten, N. Karssemeijer, Using computer-aided detection in mammography as a decision support. Eur. Radiol. 20(10), 2323–2330 (2010)CrossRefGoogle Scholar
  11. R.S. Saunders, J.A. Baker, D.M. Delong, J.P. Johnson, E. Samei, Does image quality matter? Impact of resolution and noise on mammographic task performance. Med. Phys. 34(10), 3971–3981 (2007)CrossRefGoogle Scholar
  12. S.P. Singh, S. Urooj, An improved CAD system for breast cancer diagnosis based on generalized pseudo-Zernike moment and Ada-DEWNN classifier. J. Med. Syst. 40(4), 1–13 (2016)Google Scholar
  13. P. Skaane, Studies comparing screen-film mammography and full-field digital mammography in breast cancer screening: updated review. Acta Radiol. 50(1), 3–14 (2009)CrossRefGoogle Scholar
  14. J. Tang, R.M. Rangayyan, J. Xu, I. El Naqa, Y. Yang, Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans. Inf. Technol. Biomed. 13(2), 236–251 (2009)Google Scholar
  15. H.J. Yoon, B. Zheng, B. Sahiner, D.P. Chakraborty, Evaluating computer-aided detection algorithms. Med. Phys. 34(6), 2024–2038 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional Colleges (SRMGPC)LucknowIndia
  2. 2.Dr. A.P.J. Abdul Kalam Technical UniversityLucknowIndia
  3. 3.Faculty of Electronics and Communication EngineeringShri Ramswaroop Memorial University (SRMU)BarabankiIndia
  4. 4.Department of Electrical Engineering, College of EngineeringPrincess Nourah Bint Abdulrahman UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations