Advertisement

Human Visual System Based Unsharp Masking for Enhancement of Mammograms

  • Vikrant BhatejaEmail author
  • Mukul Misra
  • Shabana Urooj
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 861)

Abstract

It is known that NPF framework consists of a scheme of linear and quadratic filtering counterparts operational as a combo of low- and high-pass filters.

References

  1. V. Bhateja, M. Misra, S. Urooj, Human visual system based unsharp masking for enhancement of mammographic images. J. Comput. Sci. 21, 387–393 (2017)CrossRefGoogle Scholar
  2. V. Bhateja, M. Misra, S. Urooj, Unsharp masking approaches for HVS based enhancement of mammograms: a comparative evaluation. Future Gen. Comput. Syst. 82, 176–189 (2018)Google Scholar
  3. H.P. Chan, C.J. Vyborny, H.E. MacMahon, C.E. Metz, K. Doi, E.A. Sickles, Digital mammography: ROC studies of the effects of pixels size and unsharp-mask filtering on the detection of subtle micro-calcifications. Investig. Radiol. 22(7), 581–589 (1987)CrossRefGoogle Scholar
  4. S. Chiandussi, G. Ramponi, Nonlinear unsharp masking for the enhancement of document images, in Proceedings of IEEE 8th European Signal Processing Conference (EUSIPCO-1996), Trieste, Italy, September 1996, pp. 1–4Google Scholar
  5. G. Deng, A generalized unsharp masking algorithm. IEEE Trans. Image Process. 20(5), 1249–1261 (2011)Google Scholar
  6. G. Deng, The symmetric generalized LIP model and its application in dynamic range enhancement. J. Math. Imaging Vis. 55(3), 253–265 (2016)MathSciNetCrossRefGoogle Scholar
  7. T.L. Economopoulos, P.A. Asvestas, G.K. Matsopoulos, Contrast enhancement of images using partitioned iterated function systems. Image Vis. Comput. 28(1), 45–54 (2010)CrossRefGoogle Scholar
  8. A.J. Evans, A.R.M. Wilson, H.C. Burrell, I.O. Ellis, S.E. Pinder, Mammographic features of ductal carcinoma in situ present on previous mammography. Clin. Radiol. 54(10), 644–646 (1999)Google Scholar
  9. C. Florea, C. Vertan, Piecewise linear approximation of logarithmic image processing models for dynamic range enhancement. Buchar. Sci. Bull. Univ. Politeh. Ser. C: Electr. Eng. 71(2), 3–14 (2009)Google Scholar
  10. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Prentice Hall, USA, 2007)Google Scholar
  11. R. Gupta, Siddharth, V. Bhateja, A new unsharp masking algorithm for mammography using non-linear enhancement function, in Proceedings of the International Conference on Information Systems Design and Intelligent Applications (INDIA-2012), Visakhapatnam, India, AISC 132, Springer, January 2012, pp. 779–786Google Scholar
  12. M. Jourlin, J.C. Pinoli, Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. Adv. Imaging Electron Phys. 115, 129–196 (2001)Google Scholar
  13. M.K. Kundu, S.K. Pal, Thresholding for edge detection using human psychovisual phenomena. Pattern Recognit. Lett. 4(6), 433–441 (1986)CrossRefGoogle Scholar
  14. P. Kuş, İ. Karagöz, Detection of micro-calcification clusters in digitized X-ray mammograms using unsharp masking and image statistics. Turk. J. Electr. Eng. Comput. Sci. 21(1), 2048–2061 (2013)CrossRefGoogle Scholar
  15. Y.H. Lee, S.Y. Park, A study of convex/concave edges and edge-enhancing operators based on the Laplacian. IEEE Trans. Circuits Syst. 37(7), 940–946 (1990)MathSciNetCrossRefGoogle Scholar
  16. S.K. Mitra, H. Li, I. Li, T.-H. Yu, A new class of non-linear filters for image enhancement, in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP-1991), Toronto, Canada, April 1991, pp. 2525–2528Google Scholar
  17. L. Navarro, G. Deng, G. Courbebaisse, The symmetric logarithmic image processing model. Digit. Signal Process. 23(5), 1337–1343 (2013)MathSciNetCrossRefGoogle Scholar
  18. K.A. Panetta, Z. Yicong, S.S. Agaian, H. Jia, Non-linear unsharp masking for mammogram enhancement. IEEE Trans. Inf. Technol. Biomed. 15(6), 918–928 (2011)CrossRefGoogle Scholar
  19. V. Patrascu, V.V. Buzuloiu, The mean dynamic range optimization in the framework of logarithmic models, in Advanced Topics in Optoelectronics, Microelectronics and Nanotechnologies, SPIE 5227, October 2003, pp. 73–80Google Scholar
  20. G. Peters, C.M. Jones, K. Daniels, Why is micro-calcification missed on mammography? J. Med. Imaging Radiat. Oncol. 57(1), 32–37 (2013)CrossRefGoogle Scholar
  21. A. Polesel, G. Ramponi, V.J. Mathews, Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)CrossRefGoogle Scholar
  22. G. Ramponi, G.L. Sicuranza, Image sharpening using a polynomial operator, in Proceedings of IEEE European Conference on Circuit Theory and Design (ECCTD-1993), Davos, Switzerland, September 1993, pp. 1431–1436Google Scholar
  23. G. Ramponi, N. Strobel, S.K. Mitra, T. Yu, Nonlinear unsharp masking methods for image contrast enhancement. J. Electron. Imaging 5(3), 353–366 (1996)CrossRefGoogle Scholar
  24. G. Ramponi, A cubic unsharp masking technique for contrast enhancement. Signal Process. 67(2), 211–222 (1998)CrossRefGoogle Scholar
  25. G. Ramponi, A. Polesel, Rational unsharp masking technique. J. Electron. Imaging 7(2), 333–338 (1998)CrossRefGoogle Scholar
  26. J. Rogowska, K. Preston, D. Sashin, Evaluation of digital unsharp masking and local contrast stretching as applied to chest radiology. IEEE Trans. Biomed. Eng. 35(10), 817–827 (1988)CrossRefGoogle Scholar
  27. A.M. Scaranelo, R. Eiada, K. Bukhanov, P. Crystal, Evaluation of breast amorphous calcifications by a computer-aided detection system in full-field digital mammography. Br. J. Radiol. 85(1013), 517–522 (2012)CrossRefGoogle Scholar
  28. H. Shvayster, S. Peleg, Inversion of picture operators. Pattern Recognit. Lett. 5(1), 49–61 (1987)CrossRefGoogle Scholar
  29. C. Vertan, A. Oprea, C. Florea, L. Florea, A pseudo-logarithmic image processing framework for edge detection, in: Advanced Concepts for Intelligent Vision Systems, October 2008. LNCS, vol. 5259 (Springer, Berlin, Heidelberg, 2008), pp. 637–644CrossRefGoogle Scholar
  30. E. Wharton, S. Agaian, K. Panetta, A logarithmic measure of image enhancement, in Mobile Multimedia/Image Processing for Military and Security Applications, SPIE 6250, May 2006, pp. 1–15Google Scholar
  31. Z. Wu, J. Yuan, B. Lv, X. Zheng, Digital mammography image enhancement using improved unsharp masking approach, in Proceedings of IEEE 3rd International Congress on Image and Signal Processing, Yantai, China, June 2010, pp. 668–671Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional Colleges (SRMGPC)LucknowIndia
  2. 2.Dr. A.P.J. Abdul Kalam Technical UniversityLucknowIndia
  3. 3.Faculty of Electronics and Communication EngineeringShri Ramswaroop Memorial University (SRMU)BarabankiIndia
  4. 4.Department of Electrical Engineering, College of EngineeringPrincess Nourah Bint Abdulrahman UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations