Advertisement

Multistep Approach for Nonlinear Fractional Bloch System Using Adomian Decomposition Techniques

  • Asad Freihat
  • Shatha Hasan
  • Mohammed Al-Smadi
  • Omar Abu Arqub
  • Shaher MomaniEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 303)

Abstract

In this chapter, a superb multistep approach, based on the Adomian decomposition method (ADM), is successfully implemented for solving nonlinear fractional Bolch system over a vast interval, numerically. This approach is demonstrated by studying the dynamical behavior of the fractional Bolch equations (FBEs) at different values of fractional order \(\alpha \) in the sense of Caputo concept over a sequence of the considerable domain. Further, the numerical comparison between the proposed approach and implicit Runge–Kutta method is discussed by providing an illustrated example. The gained results reveal that the MADM is a systematic technique in obtaining a feasible solution for many nonlinear systems of fractional order arising in natural sciences.

Keywords

Multistep approach Fractional system Bolch equations Adomian decomposition method 

References

  1. 1.
    Matuszak, Z.: Fractional Bloch’s equations approach to magnetic relaxation. Curr. Topics Biophys. 37, 9–22 (2014)CrossRefGoogle Scholar
  2. 2.
    Petras, I.: Modeling and numerical analysis of fractional order Bloch equations. Comp. Math. Appl. 61, 341–56 (2011)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Singh, H.: A new numerical algorithm for fractional model of Bloch equation in nuclear magnetic resonance. Alexandria Eng. J. 55, 2863–2869 (2016)CrossRefGoogle Scholar
  4. 4.
    Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical solution of boundary value problems for ordinary differential equations. Classics Appl. Math. 13 (1995)Google Scholar
  5. 5.
    Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.L.: Transient chaos in fractional Bloch equations. Comput. Math. Appl. 64, 3367–3376 (2012)CrossRefGoogle Scholar
  6. 6.
    Magin, R., Li, W., Velasco, M., Trujillo, J., Reiter, D., Morgenstern, A., Spencer, R.: J. Magn. Reson. 210(2), 184 (2011)Google Scholar
  7. 7.
    Bhalekar, S., Daftardar-Gejji, V., Baleanu, D., Magin, R.L.: Fractional Bloch equation with delay. Comput. Math. Appl. 61(5), 1355–1365 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hajipour, M., Jajarmi, A., Baleanu, D.: An efficient nonstandard finite difference scheme for a class of fractional chaotic systems. J. Comput. Nonlinear Dyn. 13, (2018). In pressGoogle Scholar
  9. 9.
    Kumar, S., Faraz, N., Sayevand, K.: A fractional model of Bloch equation in NMR and its analytic approximate solution. Walailak J. Sci. Technol. 11(4), 273–285 (2014)Google Scholar
  10. 10.
    Yu, Q., Liu, F., Turner, I., Burrage, K.: Numerical simulation of the fractional Bloch equations. J. Comput. Appl. Math. 255, 635–651 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Singh, H., Singh, C.S.: A reliable method based on second kind Chebyshev polynomial for the fractional model of Bloch equation. Alexandria Eng. J. (2017). In pressGoogle Scholar
  12. 12.
    Abuteen, E., Momani, S., Alawneh, A.: Solving the fractional nonlinear Bloch system using the multi-step generalized differential transform method. Comput. Math. Appl. 68, 2124–2132 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Herrmann, R.: Fractional calculus: an introduction for physicists. World Scientific (2014)Google Scholar
  14. 14.
    Al-Smadi, M., Abu Arqub, O.: Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 342, 280–294 (2019)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Abu Arqub, O., Al-Smadi, M.: Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space, Chaos Solitons & Fractals (2018). In pressGoogle Scholar
  16. 16.
    Abu Arqub, O., Odibat, Z., Al-Smadi, M.: Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn., 1–16 (2018)Google Scholar
  17. 17.
    Moaddy, K., Freihat, A., Al-Smadi, M., Abuteen, E., Hashim, I.: Numerical investigation for handling fractional-order Rabinovich-Fabrikant model using the multistep approach. Soft Comput. 22(3), 773–782 (2018)CrossRefGoogle Scholar
  18. 18.
    Agarwal, P., Chand, M., Baleanu, D., O’Regan, D., Jain, S.: On the solutions of certain fractional kinetic equations involving k-Mittag-Leffler function. Adv. Differ. Equ. 2018(1), 249 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Khalil, H., Khan, R.A., Al-Smadi, M., Freihat, A.: Approximation of solution of time fractional order three-dimensional heat conduction problems with Jacobi Polynomials. Punjab Univ. J. Math. 47(1), 35–56 (2015)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Agarwal, P., Al-Mdallal, Q., Cho, Y.J., Jain, S.: Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equ. 2018(1), 58 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation. Phys. A: Stat. Mech. Appl. 500, 40–49 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Alaroud, M., Al-Smadi, M., Ahmad, R.R., Salma Din, U.K.: Computational optimization of residual power series algorithm for certain classes of fuzzy fractional differential equations. Int. J. Differ. Equ. 2018, 1–11 (2018). Art. ID 8686502MathSciNetCrossRefGoogle Scholar
  23. 23.
    Al-Smadi, M.: Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Eng. J. (2017). In press.  https://doi.org/10.1016/j.asej.2017.04.006CrossRefGoogle Scholar
  24. 24.
    Abu Arqub, O., Al-Smadi, M.: Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Methods Partial Differ. Equ., 1–21 (2017).  https://doi.org/10.1002/num.22209MathSciNetCrossRefGoogle Scholar
  25. 25.
    Al-Smadi, M., Abu Arqub, O., Shawagfeh, N., Momani, S.: Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl. Math. Comput. 291, 137–148 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Agarwal, P., Choi, J., Jain, S., Rashidi, M.M.: Certain integrals associated with generalized Mittag-Leffler function. Commun. Korean Math. Soc 32(1), 29–38 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Agarwal, P., Berdyshev, A., Karimov, E.: Solvability of a non-local problem with integral transmitting condition for mixed type equation with Caputo fractional derivative. Results Math. 71(3–4), 1235–1257 (2017)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Agarwal, P., Jain, S., Mansour, T.: Further extended Caputo fractional derivative operator and its applications. Russian J. Math. Phys. 24(4), 415–425 (2017)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Abuteen, E., Freihat, A., Al-Smadi, M., Khalil, H., Khan, R.A.: Approximate series solution of nonlinear, fractional Klein-Gordon equations using fractional reduced differential transform method. J. Math. Stat. 12(1), 23–33 (2016)CrossRefGoogle Scholar
  30. 30.
    Khalil, H., Khan, R.A., Al-Smadi, M., Freihat, A., Shawagfeh, N.: New operational matrix for Shifted Legendre polynomials and fractional differential equations with variable coefficients. Punjab Univ. J. Math. 47(1), 81–103 (2015)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Abu-Gdairi, R., Al-Smadi, M., Gumah, G.: An expansion iterative technique for handling fractional differential equations using fractional power series scheme. J. Math. Stat. 11(2), 29–38 (2015)CrossRefGoogle Scholar
  32. 32.
    Adomian, G., Rach, R.C., Meyers, R.E.: Numerical integration, analytic continuation, and decomposition. Appl. Math. Comput. 88, 95–116 (1997)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Wazwaz, A.M.: The modified Adomian decomposition method for solving linear and nonlinear boundary value problems of tenth-order and twelfthorder. Int. J. Nonlinear Sci. Numer. Simul. 1, 17–24 (2000)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Wazwaz, A.M.: A note on using Adomian decomposition method for solving boundary value problems. Found. Phys. Lett. 13, 493–498 (2000)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ebadi, G., Rashedi, S.: The extended Adomian decomposition method for fourth order boundary value problems. Acta Univ. Apulensis 22, 65–78 (2010)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Al-Smadi, M., Freihat, A., Khalil, H., Momani, S., Khan, R.A.: Numerical multistep approach for solving fractional partial differential equations. Int. J. Computat. Methods 14(1750029), 1–15 (2017).  https://doi.org/10.1142/S0219876217500293MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Al-Smadi, M., Freihat, A., Abu Hammad, M., Momani, S., Abu Arqub, O.: Analytical approximations of partial differential equations of fractional order with multistep approach. J. Comput. Theor. Nanosci. 13(11), 7793–7801CrossRefGoogle Scholar
  38. 38.
    Momani, S., Abu Arqub, O., Freihat, A., Al-Smadi, M.: Analytical approximations for Fokker-Planck equations of fractional order in multistep schemes. Appl. Comput. Math. 15(3), 319–330 (2016)Google Scholar
  39. 39.
    Odibat, Z.M., Bertelle, C., Aziz-Alaoui, M.A., Duchamp, G.H.E.: A multi-step differential transform method and application to non-chaotic or chaotic systems. Comput. Math. Appl. 59, 1462–1472 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Gokdog\(\widehat{a}\)n, A., Merdan, M., Yıldırım, A.: Adaptive multi-step differential transformation method for solving nonlinear equations. Math. Comput. Model. 55(3–4), 761–769 (2012)Google Scholar
  41. 41.
    Jafari, H., Daftardar-Gejji, V.: Solving a system of nonlinear fractional differential equations using Adomian decomposition. J. Comput. Appl. Math. 196, 644–651 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Magin, R., Feng, X., Baleanu, D.: Solving the fractional order Bloch equation. Concepts Magn. Reson. Part A 34A(1), 16–23 (2009)CrossRefGoogle Scholar
  43. 43.
    Velasco, M., Trujillo, J., Reiter, D., Spencer, R., Li, W., Magin, R.: Anomalous fractional order models of NMR relaxation, In: Proceedings of FDA’10, the 4th IFAC Workshop Fractional Differentiation and its Applications, Vol. 1, 2010. Paper number FDA10-058Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Asad Freihat
    • 1
  • Shatha Hasan
    • 1
  • Mohammed Al-Smadi
    • 1
  • Omar Abu Arqub
    • 2
  • Shaher Momani
    • 2
    • 3
    Email author
  1. 1.Department of Applied ScienceAjloun College, Al-Balqa Applied UniversityAjlounJordan
  2. 2.Department of Mathematics, Faculty of ScienceJordan UniversityAmmanJordan
  3. 3.Department of Mathematics and SciencesCollege of Humanities and Sciences, Ajman UniversityAjmanUAE

Personalised recommendations