Advertisement

Nonlocal Conditions for Semi-linear Fractional Differential Equations with Hilfer Derivative

  • Benaouda HediaEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 303)

Abstract

This paper studies the existence of solutions for nonlocal semi-linear fractional differential equations of Hilfer type in Banach space by using the non-compact measure method in the weighted space of continuous functions. The main result is illustrated with the aid of an example.

Keywords

Semi-linear differential equations Nonlocal initial value problems Hilfer fractional derivative Fixed point theorems Measure of non-compactness Condensing map 

AMS (MOS) Subject Classifications:

26A33 34K37 37L05 34B10. 

Notes

Acknowledgements

The author would like to express his warmest thanks to all members of ICFDA18 International Conference on Fractional Differentiation and its Applications 2018 for his/her valuable comments and suggestions.

References

  1. 1.
    Agarwal, R.P., Hedia, B., Beddani, M.: Structure of solutions sets for imlpulsive fractional differential equation. J. Fract. Calc. Appl 9(1), 15–34 (2018)Google Scholar
  2. 2.
    Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  3. 3.
    Bothe, D.: Multivalued perturbations of \(m\)-accretive differential inclusions. Israel J. Math. 108, 109–138 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Browder, F.E., Gupta, G.P.: Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26, 390–402 (1969)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deimling, K.: Nonlinear Functional Analysis. Springer (1985)Google Scholar
  6. 6.
    Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 179, 630–637 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Diethelm, K.: Analysis of Fractional Differential Equations. Springer, Berlin (2010)CrossRefGoogle Scholar
  8. 8.
    Diethelm, K., Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Djebali, S., Górniewicz, L., Ouahab, A.: Solutions Sets for Differential Equations and Inclusions. De Gruyter, Berlin (2013)CrossRefGoogle Scholar
  10. 10.
    Dragoni, R., Macki, J.W., Nistri, P., Zecca, P.: Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series 342. Longman, Harlow (1996)zbMATHGoogle Scholar
  11. 11.
    Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore, pp. 87–429 (2000)CrossRefGoogle Scholar
  14. 14.
    Hilfer, R.: Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 284, 399–408 (2002)CrossRefGoogle Scholar
  15. 15.
    Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. De Gruyter, Berlin (2001)CrossRefGoogle Scholar
  16. 16.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam (2006)CrossRefGoogle Scholar
  17. 17.
    Toledano, J.M.A., Benavides, T.D., Azedo, G.L.: Measures of Noncompactness in Metric Fixed Point Theory. Birkhauser, Basel (1997)CrossRefGoogle Scholar
  18. 18.
    Wang, J.R., Zhang, Y.: Nonlocal initial value problems for differential equations with Hilfer fractional derivative. Appl. Math. Comput. 266, 850–859 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)CrossRefGoogle Scholar
  20. 20.
    Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Loboratory of Mathematics and InformaticsUniversity Ibn Khaldoun of TiaretTiaretAlgeria

Personalised recommendations